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a b s t r a c t 

Despite advances in prevention, detection, and treatment, cardiovascular disease is a lead- 

ing cause of mortality and represents a major health problem worldwide. Artificial intel- 

ligence and machine learning have brought new insights to the management of vascu- 

lar diseases by allowing analysis of huge and complex datasets and by offering new tech- 

niques to develop advanced imaging analysis. Artificial intelligence–based applications have 

the potential to improve prognostic evaluation and evidence-based decision making and 

contribute to vascular therapeutic decision making. In this scoping review, we provide an 

overview on how artificial intelligence could help in vascular surgical clinical decision mak- 

ing, highlighting potential benefits, current limitations, and future challenges. 

© 2023 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Health care systems have evolved rapidly over the past several
decades and have benefited from advances in computer sci-
∗ Corresponding author. 
E-mail address: fabien.lareyre@gmail.com (F. Lareyre). 

 

 

 

https://doi.org/10.1053/j.semvascsurg.2023.05.004 
0895-7967/$ – see front matter © 2023 Elsevier Inc. All rights reserved. 
ence, including global connection with the use of internet and
the development of powerful devices at affordable costs that
have allowed the widespread implementation of electronic
health records. Progress in information technology, along
with technical advances in various fields, including biology,
imaging, pharmacology, and devices, have generated a huge
amount of data (“big data”) and there is a need to optimize
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their management and analysis to enhance evidence-based
clinical practice [1,2] . 

Artificial intelligence (AI) has brought innovative tech-
niques to enable analysis of large and heterogeneous datasets.
Machine learning (ML) and deep learning (DL) algorithms have
allowed us to identify patterns and non-linear relationships
among complex data without any a priori assumptions [3] .
Unlike the classic statistical approach, they are dynamic, can
learn automatically from the available data, and require no or
minimal human intervention [3] . Although the former leads
to the development of a probabilistic model based on the as-
sumption that the provided data are a representative sample
and subset of a larger population that can be described by a
model, the latter concentrates on prediction by using learning
algorithms to find patterns in often rich and unwieldy data [3] .
ML and DL are thus able to unravel hidden patterns and com-
plex associations, although they are less easily interpretable
[3] . AI has brought innovative applications to improve the de-
tection and characterization of vascular diseases, which can
help in the diagnosis, prognosis, or treatment of patients [4–6] .
Despite current challenges including technical, methodolog-
ical, ethical, administrative, and political considerations, AI
has the potential to enhance evidence-based decision mak-
ing. In this review, we present practical examples on how AI
can help clinicians in vascular surgical clinical decision mak-
ing through various applications, including triage of patients,
identification of acute life-threatening vascular condition,
early diagnosis, stratification of vascular diseases, surgical risk
assessment, or preoperative planning. In light of current find-
ings, we discuss limits and suggest future directions for im-
plementation of AI technology in daily practice to provide aid-
decision support and propose a personalized approach for the
management of patients with vascular diseases. 

2. Early diagnosis of acute vascular disease 

Emergency clinical departments face high pressure and com-
plex decision-making challenges managing patient flow in
an unpredictable and constantly changing environment. The
main challenge for clinicians is to quickly and efficiently dis-
tinguish patients with life-threatening disorders from those
with less urgent and non-critical conditions. 

2.1. Acute aortic syndrome 

Chest pain is one of the most common reasons for admis-
sion in emergency departments and the diagnosis of the cause
is essential to directing the patient and initiating therapeu-
tic interventions in a timely fashion. There are many causes
for chest pain and the main acute life-threatening condition
that requires immediate referral to vascular surgeons is acute
aortic syndrome. Prehospital evaluation and triage of patients
are of utmost importance to optimize resources and trans-
fer the patients in specialized units, such as aortic centers
or departments of vascular surgery [7] . Some investigators
aimed to build a prediction algorithm based on an ensemble
ML method to assist prehospital triage and detect acute aor-
tic syndrome [7] . The area under the curve for the ML method
was 0.73 (95% CI, 0.66–0.79; P = .038) in the validation cohort
[7] . Although the method needs to be evaluated and validated
in other cohorts, it exemplifies how ML could help early de-
tection and management of acute aortic syndrome. 

2.2. Acute ischemic stroke 

Acute ischemic stroke is another vascular life-threatening dis-
ease that requires early identification and treatment in spe-
cialized units [8] . Endovascular therapy has revolutionized the
management of large-vessel occlusion ischemic stroke and
time to treatment is a decisive factor of clinical outcomes.
Computer-aided triage systems have the potential to stream-
line workflow. Some centers have evaluated the use of an ap-
plication including an image viewer, a communication sys-
tem, and an AI algorithm to automatically detect large-vessel
occlusion stroke and trigger alerts to clinicians [9] . The initial
time interval from door to neuro-interventional team notifi-
cation was improved considerably, and there was a tendency
toward a reduction in the time interval from door to skin punc-
ture, indicating the interest of such an approach to optimize
the management of stroke [9] . In addition to optimizing work-
flow, pioneering studies suggest that ML could also help to
develop new tools to identify patients with stroke on the ba-
sis of blood sample analysis [10] . Some investigators used an
artificial neural network to discriminate patients with stroke
from input data collected from red blood and white blood cell
counts and their results suggested that such algorithmic anal-
ysis could potentially be of interest in emergency departments
to flag patients with potential diagnosis of stroke, or to provide
information to clinicians to help in triage decisions in cases
when imaging techniques or neurologic expertise are not im-
mediately available [10] . 

3. Inpatient monitoring 

Patients with vascular diseases can present acute life-
threatening decompensation and early diagnosis is a critical
issue that impacts on the outcomes and prognosis of patients.

3.1. Cardiorespiratory instability 

Cardiorespiratory instability of patients during their hospital
stay is a frequently occurring and undesirable complication
that requires prompt diagnosis and immediate treatment to
prevent the consequences of reduced oxygen delivery to tis-
sues. Continuous monitoring of vital signs, including heart
rate, mean arterial pressure, respiratory rate, and peripheral
oxygen saturation, is used systematically in operating rooms,
post–anesthesia care units, and intensive care units in order
to promptly detect and react to vital deterioration [11] . De-
spite continuous monitoring, having predictive models that
could warn clinicians before the occurrence of the decompen-
sation might help to prevent it and save lives. Pioneering stud-
ies are currently ongoing toward that aim, with, for example,
the development of ML-based algorithms that predict the risk
of tachycardia (which can indicate cardiac decompensation)
on the basis of monitoring the 3-hour period preceding the
event [11] . Non-invasive monitoring combined with ML analy-
sis might help to develop new tools to detect changes in vital
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signs early, before the occurrence of cardiorespiratory decom-
pensation, and could help to prevent critical hemodynamic
events. Although further studies and external validation are
required, that kind of application could benefit patients ad-
mitted for acute vascular conditions. 

3.2. Hemodynamic instability 

One of the common risks during surgery, including vascu-
lar interventions, is the occurrence of intraoperative hypoten-
sion. This is especially the case in vascular surgery when pa-
tients present with hemodynamic instability or massive hem-
orrhage. ML-based methods have been developed to predict
hypotension events in the next 5 to 15 minutes and have been
evaluated in patients undergoing non-cardiac surgery [12,13] .
The method provided an early warning system a few minutes
before blood pressure decreases [12,13] . The algorithm, called
the Hypotension Prediction Index, has been demonstrated to
reduce intraoperative hypotension in two randomized con-
trolled trials via real-time prediction of upcoming hypotensive
events [12,13] . That kind of early warning system could be use-
ful in the operating room to detect and manage hypotension
early and prevent complications linked to low blood flow. 

4. Risk stratification of vascular disease 

By allowing the identification of hidden patterns among com-
plex data without any a priori assumption, ML can be used to
develop personalized risk stratification to evaluate and pre-
dict the outcomes related to vascular diseases. Several litera-
ture reviews previously summarized AI-predictive models in
various non-cardiac vascular diseases, including aortic dis-
ease, lower extremity artery disease (LEAD), or carotid stenosis
[5,14–16] . 

4.1. Aortic aneurysm 

Current guidelines for the management of aortic aneurysm
state that they should be treated promptly if they are symp-
tomatic or ruptured [17] . For asymptomatic aneurysms, deci-
sion making is more complex and indication for repair relies
on the evaluation of the risk of aneurysm growth and rupture,
mainly assessed by the measurement of maximal aneurysm
diameter on imaging data [17] . However, some patients with
small aneurysms below the threshold for repair do develop a
rupture, which highlights the need for innovative techniques
to better assess the risk of aneurysm progression [17] . Several
ML models have been proposed to predict the risk of aneurysm
growth and rupture using various input data, including clini-
cal, biological, and imaging data [6,18,19] . The results of these
studies showed good accuracy to predict these risks, show-
ing a proof of concept, although validation in multicenter
prospective cohorts is necessary to generalize their use. 

4.2. Lower extremity artery disease 

Other examples of how ML can help stratify the severity of dis-
ease are also provided in other vascular disorders, including
LEAD [4,5] . LEAD is a major health concern, as it affects more
than 237 million people worldwide and is associated with risk
of cardiovascular mortality and amputation [20] . The man-
agement of LEAD takes into consideration the severity and
stage of the disease, as well as the evaluation of cardiovas-
cular risk factors, to maximize limb survival and limit cardio-
vascular complications [20] . In this context, some investiga-
tors aimed to develop ML algorithms to classify LEAD sever-
ity on the basis of multiple routine clinically available pa-
rameters, including clinical and biological data [21] . The score
successfully classified patients with Fontaine class I and II
LEAD from patients with Fontaine class III and IV and posi-
tively correlated with the intrahospital mean ankle-brachial
index [21] . By enabling rapid identification of patients with
severe LEAD on the basis of basic clinical and biological fea-
tures, that kind of application could be used to promptly de-
tect and identify patients requiring vascular intervention be-
fore having more specialized imaging diagnostics. LEAD is
one of the leading causes of amputation and individualized
risk prediction would help clinical decision making. On the
basis of preoperative clinical and laboratory information of
14,444 patients who underwent LEAD procedures, some in-
vestigators developed an ML model to predict the risk of 30-
day amputation with an area under the curve of 0.81 [22] .
Although external validation is required, adding that kind
of assessment in clinical decision trees might help to bet-
ter adjust revascularization strategies and enhance precision
medicine. Finally, LEAD is associated with atherosclerosis and
patients are at high risk of developing cardiovascular com-
plications, and several ML models have been built to better
assess the risk of major adverse cardiac and cerebrovascu-
lar events [4] . Taken together, integrating the severity of LEAD
with the risk of amputation and cardiovascular events might
help clinicians optimize the medical treatment and determine
the most appropriate strategy for revascularization in a timely
fashion. 

4.3. Carotid stenosis 

Carotid stenosis is another atherosclerosis-related disease
and is associated with risk of cerebrovascular events, includ-
ing ischemic stroke or transient ischemic attacks [8] . When
carotid stenosis is diagnosed, the main questions for clini-
cians are: Should it be treated? If yes, when and how? [8] . Sev-
eral ML predictive models have been built to identify predic-
tive patterns of stroke risk from carotid plaques characteriza-
tion on imaging, including magnetic resonance imaging, com-
puter tomography angiography, or ultrasound [16,23] . These
studies support the use of AI to help clinical decision making
for the management of carotid stenosis, although the mod-
els still need further validation before their use for clinical
practice. 

5. Preoperative planning 

AI brings opportunities to develop advanced imaging tech-
niques to better detect, diagnose, and classify vascular dis-
eases [4–6] ,[16] . Automatic segmentation of the vascular sys-
tem has brought new insights to the management of aortic
aneurysms, with the development of methods that allow easy,
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robust, and fast quantification of the anatomic characteris-
tics of the vessels, such as the measurement of aneurysm
maximal diameter or aneurysm volume [24–26] . Such meth-
ods can be used to develop AI-driven solutions and software
to improve preoperative planning, especially in eligible en-
dovascular aortic aneurysm repair, where sizing can be nec-
essary to order endografts adapted to the patient’s anatomy.
Some investigators trained and applied a fully automated
pipeline using a convolutional neural network to automat-
ically segment the thoracic aorta, detect proximal landing
zones, and quantify geometric features that are relevant for
thoracic endovascular aortic repair planning [27] . The sys-
tem allowed to automatically identify the adequate land-
ing zones for endograft deployment and to provide measure-
ments of relevant aortic metrics in order to facilitate pre-
operative planning. Another study used finite element com-
putational simulation to predict the deployment of a fenes-
trated device [28] . Compared with results obtained on post-
operative computed tomography angiography, the numeri-
cal model demonstrated its accuracy for planning the posi-
tion of the fenestration [28] . The performance of the numeri-
cal simulation of fenestrated stent-graft deployment was fur-
ther evaluated compared with in vitro studies and demon-
strated its accuracy for positioning the fenestrations [29] .
Taken together, these results emphasize the interest in AI
for preoperative planning, by generating, easy, fast, and re-
producible measurements of the vessels for endograft siz-
ing and for predicting and simulating the deployment of the
device. 

In addition to preoperative planning, imaging techniques,
such as completion digital subtraction angiography, are fre-
quently used in the operating room to guide endovascular pro-
cedures. AI can help in the development of applications to
enhance image-guided surgery. As an example, some inves-
tigators developed a fully automatic method for stent-graft
segmentation on digital subtraction angiography during en-
dovascular aortic aneurysm repair using a DL network [30] .
The method demonstrated its accuracy to segment endograft
with a Dice similarity score of 0.957 ± 0.041 and can serve as
a basis to develop useful tools for vascular surgeons, such as
applications to analyze stent-graft deployment accuracy or to
allow early detection and visualization of endoleaks [30] . Ap-
plications for surgical planning and image-guided surgery is
a very active area in vascular surgery, as witnessed by an in-
creasing number of companies and startups offering services
to advance vascular visualization and improve decision mak-
ing in the operating room [31–35] . It is anticipated that such
applications may soon be widespread and become standard
in daily clinical practice. 

6. Surgical risk assessment and outcome 

prediction 

Depending on the symptoms and severity of vascular dis-
eases, surgical and/or endovascular interventions can be re-
quired to treat the lesions. Risk stratification in preparation
for surgery helps clinicians identify high-risk patients to op-
timize resources, plan the intervention, and anticipate peri-
and postoperative complications [1] . 
6.1. General surgical risk assessment 

Several studies used ML algorithms to identify high-risk surgi-
cal patients. Using clinical and surgical data across 37 million
clinical encounters from electronic health records, Corey et al
[36] developed a model that predicted postoperative compli-
cation risk with a sensitivity of 76% and a specificity of 76%.
Another model to evaluate surgical complexity score was built
using ML to predict adverse outcomes among patients under-
going elective surgery [37] . Using administrative billing data
from 1,049,160 patients undergoing elective surgery, this novel
surgical Complexity Score outperformed three of the most
commonly used risk-adjustment indices (ie, Charlson Comor-
bidity Index, Elixhauser Comorbidity Index, and Centers for
Medicare and Medicaid Service’s Hierarchical Condition Cate-
gory) to predict perioperative morbidity and 90-day readmis-
sion [37] . Although further work is necessary to evaluate the
impact of these models on clinical workflow and postopera-
tive outcomes, they could help as decision support tools to
identify high-risk patients, plan the intervention, and antic-
ipate postoperative outcomes. 

6.2. Specific risk assessment for vascular procedures 
(aortic, LEAD, and carotid procedures) 

Although the previous scores were developed for patients un-
dergoing surgery regardless of the type of interventions, ML-
based scores have also been developed to predict the out-
comes of patients specifically after vascular interventions.
For instance, ML algorithms were used in patients undergo-
ing repair of aortic aneurysms to predict the risk of mor-
tality, re-intervention, and postoperative complications, such
as the occurrence of endoleaks or aneurysm sac expansion
[6,16] . In patients with LEAD, AI-based prediction models were
also developed to predict limb survival and risk of ampu-
tation after revascularization [4,16,22] . In patients undergo-
ing carotid intervention, ML algorithms were used to predict
various postoperative outcomes, including risk of ischemic
stroke, hemodynamic depression, major adverse cardiovascu-
lar events, and risk of re-intervention [16] . ML predictive mod-
els can not only serve as innovative tools to evaluate surgical
risk, but also to assess the probability of therapeutic success.
By balancing the severity and risks related to the disease it-
self and risks linked to vascular interventions, AI can lead to
the development of aid-decision support to propose individ-
ualized therapeutic approach for patients with vascular dis-
eases. 

7. Challenges 

Although AI offers a wide range of applications to improve
vascular surgical decision making, there are several barriers
to immediate implementation in clinical practice. First, the
performances of the ML models are dependent on datasets
used for training. Building large international databases may
help to ensure algorithmic fairness by developing robust mod-
els that are still accurate, even in case of rare conditions or
events. Training AI models from dynamic and continuously
updated real-world data might also help to develop real-time
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prognostication, guide personalized therapy, and enhance ev-
idence generation for clinical guidelines. 

Second, most of the ML algorithms developed so far have
been trained and validated using retrospective cohorts. Exter-
nal validation in multicenter cohorts and prospective studies
is required to assess the generalizability of the models. To the
best of our knowledge, no results from randomized clinical tri-
als have been published that evaluated the use of AI tools in
vascular surgery, although some trials have been registered
recently and might provide new insights. Most of the stud-
ies performed so far compared the performances of AI models
with the ground truth provided by human experts. In addition
to the accuracy, the clinical benefits in terms of patient out-
comes and economic impact remain to be evaluated. 

An additional aspect raised by AI is the explicability, as well
as accountability, of the models, as they function as “black
boxes,” making it difficult to explain precisely how they work,
to determine causal links, and to define who is responsible
for the process [38] . AI and ML programs are considered medi-
cal products and may therefore meet regulatory requirements.
Although the general framework on legal considerations for
medical products has been defined by the European Union
laws and the Food and Drug Administration in the United
States, multidisciplinary groups of experts are currently work-
ing on guidelines related to AI and health that will help to
improve standardization to validate AI tools [38] . AI models
should guarantee patient privacy, data protection, and secu-
rity at all stages, from conception to development, validation,
and service delivery to end users, in accordance with the Euro-
pean Union general data protection regulation and the Health
Insurance Portability and Accountability Act of 1996 [39] in the
United States. Finally, technical and economic considerations
are also at stake for the implementation of AI-driven decision-
making support systems. Computational power and compu-
tational time must fit with the resources, infrastructure, and
organization of health care systems to meet the expected ben-
efits according to the intended use. Also, who should pro-
vide financial support for the implementation of AI technolo-
gies? Only a few studies have so far investigated the cost-
effectiveness of AI techniques for the management of vascular
diseases. Deeper analysis of medico-economic impact might
help to better define health care system strategies for the de-
velopment, implementation, and re-imbursement policies of
AI applications. 

8. Conclusions 

AI holds great promise for the development of aid-decision
support for patients with vascular diseases, with a wide range
of applications, including early detection of life-threatening
conditions; balanced risk assessment integrating the sever-
ity of the disease; and risks related to intervention, presurgi-
cal planning, or image-guided surgery. Although legal, ethical,
technical, and economic challenges must still be overcome,
AI technologies have the potential to bring new applications
to support vascular clinical decision making and personalized
care by enhancing real-time diagnosis, prognostication, and
visualization. Although they can improve evidence-based de-
cision, they should be considered as a resource tool available
for clinicians, without replacing their knowledge, expertise,
responsibilities, and duties to patients. Applying AI in medical
practice will require health care professionals to learn how to
work with these innovative technologies and adapt their work
in evolving health care systems [38,40] . Education, training,
and involvement of vascular specialists to provide expertise
and feedback on the use of AI technology are cornerstones to
develop fair, safe, accurate, and efficient applications to im-
prove care provided to patients with vascular diseases. 
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