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Cardiovascular disease represents a source of major health problems worldwide, and al- 

though medical and technical advances have been achieved, they are still associated with 

high morbidity and mortality rates. Personalized medicine would benefit from novel tools to 

better predict individual prognosis and outcomes after intervention. Artificial intelligence 

(AI) has brought new insights to cardiovascular medicine, especially with the use of machine 

learning techniques that allow the identification of hidden patterns and complex associa- 

tions in health data without any a priori assumptions. This review provides an overview 

on the use of artificial intelligence–based prediction models in vascular diseases, specifi- 

cally focusing on aortic aneurysm, lower extremity arterial disease, and carotid stenosis. 

Potential benefits include the development of precision medicine in patients with vascular 

diseases. In addition, the main challenges that remain to be overcome to integrate artificial 

intelligence–based predictive models in clinical practice are discussed. 
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1. Introduction 

Cardiovascular diseases are the leading cause of deaths in de-
veloped countries and represent a heavy burden on health
care, economy, and society [1,2] . Aortic aneurysm, lower ex-
tremity arterial disease (LEAD), and carotid stenosis are the
top three cardiovascular diseases that are being managed in
daily vascular surgical practice. Despite technical advances
and innovations in diagnostics and treatment, management
of these vascular diseases is still challenging and patient out-
comes are often associated with high rates of morbidity and
mortality [3–6] . Novel tools to better predict individual prog-
nosis and outcomes of interventions would help to develop
personalized medicine and improve patient care. 

Artificial intelligence (AI) has brought new insights to car-
diovascular disease with the development of innovative tech-
niques. AI is a broad domain and among the main fields, com-
puter vision offers opportunities to enhance imaging analysis
and natural language processing (NLP) brings new tools to im-
prove the management of health data. Furthermore, smart de-
vices are contributing to the development of new techniques
to better detect, diagnose, classify, predict, or treat these dis-
eases [7–9] . As a branch of AI, machine learning (ML) enables
computer technology to learn from data. ML can be used to
identify patterns among complex data, shrink a vast volume
of information to a more meaningful level, and make predic-
tions without being explicitly programmed and without spe-
cific a priori assumption. Although risk prediction in health
care has so far been based on traditional statistical methods,
they may present some limitations. Statistics methods are
mainly based on inference and create probability models [10] .
However, they allow the investigation of associations among
a limited number of predefined parameters and they were de-
signed for models with input variables and sample sizes that
would be considered small to moderate today. Advances in
technology and computer science have led to an exponential
increase in health data, and appropriate methods, such as ML,
can help to capture complex relationships among data [10] .
ML-based prediction models for cardiovascular diseases are
promising, especially in vascular surgery [7 ,9 ,11] , as they have
the potential to provide improved prognostic evaluation, guid-
ance of therapeutic decision making, and contribute to en-
hanced precision medicine [7 ,9 ,11] . In this review, we aimed
to summarize the main AI-based predictive models, focus-
ing on aortic aneurysm, LEAD, and carotid stenosis. This re-
view may serve as an update to provide a brief overview for
an increasing number of research projects using these new
technologies. 

2. Aortic aneurysm 

2.1. Prediction of aortic aneurysm growth and risk of 
rupture 

Aortic aneurysms are associated with high rates of morbidity
and mortality. Aneurysm growth and risk of rupture are the
main indications for aneurysm repair, therefore, effective and
accurate tools to predict these events would be essential to
inform therapeutic decisions. Several ML models have been
developed in this field and have demonstrated encouraging
but preliminary results [12] . Among them, Kontopodis et al
[13] tested several ML algorithms based on 29 input variables,
including clinical, biological, morphometric, and biomechan-
ical characteristics, to predict abdominal aortic aneurysm
(AAA) growth rate and classify their growth rate as high or low.
Based on a cohort of 40 patients with small AAAs, the XGboost
(extreme gradient boosting) model achieved the highest area
under the curve (AUC) in predicting growth rate (81.2%; 95% CI,
61.1%–100%) [13] . In this model, the most important predictive
factors were maximum aneurysm diameter and neck diame-
ter, tortuosity from the renal arteries to the aortic bifurcation,
and maximum thickness of the intraluminal thrombus, high-
lighting the importance of anatomic characteristics of AAA to
predict its progression [13] . Other investigators developed an
ML algorithm to predict rupture using 45 features extracted
from 66 patients [14] . Their results indicate that the BestFirst
feature selection algorithm yielded the highest prediction ac-
curacy (82% on the test set). These results suggest that a com-
bination of several parameters that comprehensively capture
AAA behavior may help to evaluate the risk of AAA-related
events, such as rupture. However, the model performance
needs to be improved and trained on larger cohorts of patients
with iterative adjustments to improve accuracy and reliabil-
ity. Indeed, another study used a much larger cohort of pa-
tients with descending aortic aneurysms (n = 1,083) to predict
occurrence of rupture, dissection, or all-cause mortality and
trained 6 ML models with 44 variables [15] . All of these mod-
els demonstrated better performance than simple descend-
ing aortic diameter measurement to predict these outcomes,
showing the additional value of ML-based risk stratification
to predict aneurysm-related complications [15] . These models
could be of further interest to guide screening and follow-up
strategies. 

The variety and heterogeneity of available algorithms and
subsequently derived models also emphasized that results
may be prone to inflation bias to some degree. In addition, a
main limitation in this research area is that it is difficult to ob-
tain a standardized follow-up of patients with data regarding
the outcomes (aneurysmal growth or rupture). Hence, it seems
reasonable to strictly follow appropriate reporting standards
and prespecify the basic study characteristics if possible. 

2.2. Prediction of postoperative outcomes 

Several studies have focused on ML to predict outcomes after
aneurysm repair, including the risk of mortality and postoper-
ative complications [12] . Endoleaks are the Achilles heel of en-
dovascular aneurysm repair (EVAR) and influence long-term
outcomes and reintervention rates. Therefore, several predic-
tive models have been developed to better evaluate the risk of
endoleaks [16–18] . Masuda et al [17] integrated patient char-
acteristics, stent-graft configuration, and a selection of vessel
lengths, diameters, and angles measured on the basis of pre-
operative computed tomography angiography (CTA) in an ML
model to predict the occurrence of Type I and II endoleaks af-
ter EVAR [17] . The AUC of the predictive model was 0.88, with
a sensitivity of 0.85 and a specificity of 0.91 [17] . Another study
evaluated the performance of radiomic features derived from
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CTA to differentiate aggressive from benign Type II endoleaks
post EVAR [16] . Patients were divided into two groups accord-
ing to changes in aneurysm sac dimensions, differentiating
aggressive from benign Type II endoleaks. In this study, two su-
pervised ML algorithms (support vector machines [SVM] clas-
sifiers) were developed to predict the aneurysm sac dimen-
sion changes at 1 year, using radiomic features at 1- and 6-
month CTAs. These SVM classifiers trained on 1- and 6-month
radiomic features were able to predict sac expansion at 1 year
with an AUC of 89.3% and 95.5%, respectively. Hence, ML mod-
els might not only be of interest to predict the occurrence of
Type II endoleaks, but are also able to predict its impact on
aneurysm sac expansion and therefore guide therapeutic de-
cision making. In addition to endoleaks, other serious EVAR-
related adverse events can occur, such as iliac limb occlusion
or restenosis, stent-graft migration, aneurysm sac expansion,
or AAA rupture. Several studies have reported the role of ML
to predict these outcomes [18 ,19] . In their study, Wang et al
[19] included 493 patients for the development and compar-
ison of multimodal models (optimized morphologic feature,
deep learning [DL], and radiomic models) to predict EVAR-
related severe adverse events [19] . The radiomic model based
on logistic regression demonstrated better predictive perfor-
mance (AUC = 0.93) than the other models. Together these re-
sults support the future use of ML-based predictive models to
evaluate the prognosis of patients with AAA and enhance pre-
cision medicine through evaluation of the balance between
risk of AAA growth and rupture and risks related to potential
postoperative complications. 

2.3. Lower extremity arterial disease 

2.3.1. Prediction of systemic cardiovascular events and mor-
tality 
LEAD is a major problem in health care, as it affects more
than 237 million people worldwide and is associated with high
rates of morbidity and mortality [4 ,20] . LEAD is associated with
systemic atherosclerosis and patients are at high risk of de-
veloping cardiovascular events. Several studies demonstrated
the potential role of ML models to predict the risk of major
adverse cardiac and cerebrovascular events [21 ,22] . ML was
also used to predict the risk of mortality [23] . In a cohort of
1,755 patients with LEAD, several ML algorithms using clinical,
imaging, and genomic information were built and tested to
predict future mortality. The performances of the ML models
tended to be higher compared with logistic regression models
(AUC = 0.76 v 0.65; P = .10), showing encouraging results for de-
veloping new tools to evaluate the prognosis of patients with
LEAD [23] . 

Furthermore, patients with LEAD are often treated with an-
tithrombotic or anticoagulant drugs and the balance between
prevention of atherosclerosis-related complications and risk
of bleeding events remains difficult to evaluate [24] . In this
context, using a LASSO (least absolute shrinkage and selec-
tion operator) approach, a novel risk score (OAC3-PAD risk
score) was recently built to predict the risk of major bleeding
events 1 year after hospitalization for LEAD [25] . The score was
developed from data derived from Germany’s second largest
health insurance fund and the cohort included 81,930 pa-
tients. The score was composed of 8 items and exhibited ade-
quate calibration and discrimination between four risk groups
of major bleeding ( c = 0.69; 95% CI, 0.67–0.71). External valida-
tion was performed in a prospective cohort of 5,479 patients
and confirmed the performance of the OAC3-PAD bleeding
risk score (discrimination using Harrell’s c -statistic = 0.61; 95%
CI, 0.43–0.80) [26] . As the first internally and externally vali-
dated pragmatic bleeding score in the LEAD field, this could
be useful to support clinical guidelines and potentially de-
velop patient-centered decisions regarding use of antithrom-
botic treatments. 

2.3.2. Prediction of limb-related and post-intervention out-
comes 
In addition to medical treatment, revascularization is a cor-
nerstone of LEAD treatment and can be proposed on the ba-
sis of the stage of disease. However, the risk of postopera-
tive complications remains difficult to predict [4 ,27] and AI-
based models have been proposed in this setting [28] . As an
example, some authors investigated whether ML could pre-
dict the 2-year major adverse limb event–free survival after
percutaneous transluminal angioplasty and stenting for LEAD
[29] . In a cohort of 392 patients, demographic, medical, and
imaging data were used to develop an ML model. The arti-
ficial neural network (ANN) model achieved an AUC of 0.80
(95% CI, 0.68–0.89] and significantly outperformed the logis-
tic regression model to predict event-free survival. This study
points to the potential use of ML to guide therapeutic decision
making. 

Better prediction of amputation risk in LEAD may also
help to optimize treatment decisions. Based on the Ameri-
can College of Surgeons National Surgical Quality Improve-
ment Program database including 14,444 patients who un-
derwent endovascular procedures for LEAD, a random forest
ML model was built to predict 30-day amputation [30] . The
model achieved an AUC of 0.81, and although external vali-
dation is required, it offers interesting perspectives to opti-
mize clinical decision making for patients with LEAD [30] . Fur-
thermore, wound healing after amputation is another con-
cern and is very difficult to predict. A novel wound multi-
spectral imaging system was developed to help predict heal-
ing after amputation and was tested in 25 patients with var-
ious levels of amputation (ie, toe, transmetatarsal, below-
knee, or above-knee) [31] . Using patients clinical risk fac-
tors combined with preoperatively obtained imaging of the
lower limb, the ML algorithm had a sensitivity of 91% and
a specificity of 86% for predicting non-healing amputation
sites [31] . 

Finally, chronic limb-threatening ischemia (CLTI) has a sig-
nificant impact on quality of life, with high rates of morbidity
and mortality [32] . Prognostic tools would aid in clinical de-
cision making. Several CLTI prediction models have been de-
veloped using statistical methods, such as those derived from
the BASIL (Bypass versus Angioplasty in Severe Ischaemia of
the Leg), FINNVASC (Finland National Vascular registry), PRE-
VENT III (Prevention of Infrainguinal Vein Graft Failure) [32] .
However, external validation in other cohorts found that all
these models performed poor to fair in predicting mortality
and amputation, with an AUC ranging from 0.60 to 0.71 for
the latter [32] . To develop new stratification models in patients
with CLTI, some investigators used ML models (supervised
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topic model cluster analysis) using cohort data from the PRE-
VENT III randomized clinical trial to predict 1-year CLTI-free
survival, defined as a composite of survival with remission
of ischemic rest pain, wound healing, and freedom from ma-
jor lower-extremity amputation [33] . Interestingly, three dis-
tinct clusters were identified within the cohort, with distinct
1-year CLTI-free survival rates (82.3% for stage 1, 61.1% for
stage 2, and 53.4% for stage 3) [33] . Although further stud-
ies are required for validation, this approach could improve
risk stratification in patients with CLTI because of its ability to
incorporate a wider variety of features compared with other
previously published stratification schemes. In addition, this
method has the advantage of malleability, and it can adjust as
the prevalence and severity of risk factors change over time
within the disease. 

3. Carotid stenosis 

Carotid stenosis is another manifestation of atherosclerosis
that carries a risk of cerebrovascular event, such as acute is-
chemic stroke or transient ischemic attacks, which is a major
cause of long-term disability and the second leading cause of
death worldwide [5 ,6] . In 2020, almost 30% of the global popu-
lation aged 30 to 79 years had increased carotid intima-media
thickness [34] . The treatment of carotid stenosis aims to re-
duce the future risk for plaque-related ischemic stroke, but
interventional therapies are associated with potential com-
plications. Patients would benefit from tools to measure an
optimal balance between the risk of cerebrovascular events
and intervention-related complications. AI may help optimize
care via developing predictive models to improve treatment
selection. 

3.1. Plaque characterization and identification of 
predictive patterns of stroke risk 

Carotid plaque characterization and classification of carotid
plaque may help to better predict the risk of cerebrovascular
events and assist in the clinical decision making for revascu-
larization [35] . Atherosclerosis of carotid arteries is character-
ized by a focal accumulation of lipids, fibrous elements, and
calcification, which results from complex mechanisms involv-
ing endothelial activation and a related chronic low-grade in-
flammatory process. Thus, characterization and determining
the nature of carotid plaques are challenging, as they are com-
posed of various components formed at different stages dur-
ing plaque formation, progression, and remodeling [35] . Sev-
eral imaging techniques are available [36] and a recent re-
view summarized the main types of AI models that were used
to analyze carotid plaques and identified patterns associated
with symptomatic disease and plaque vulnerability based on
magnetic resonance imaging, computer tomography, or ultra-
sound (US) [35] . 

As US is non-invasive, inexpensive, and easily available, it
is not surprising that studies published so far mainly used
this imaging technique to classify carotid plaques and develop
predictive models of stroke risk [35] . Symptomatic plaques
are often hypoechoic due to a large lipid core, minimal col-
lagen, and a heterogeneous fibrous cap, while asymptomatic
plaques are hyperechoic and often calcified [35] . Using DL al-
gorithms, several investigators developed computer-aided di-
agnostic systems for tissue classification and characteriza-
tion based on US images [35] . As an example, Guang et al
[37] evaluated the performance of their DL-based detection
and classification system for carotid plaques on US compared
with two experienced radiologists who manually classified
plaque vulnerability. In a cohort of 205 patients, the DL sys-
tem demonstrated a better AUC (0.84 v 0.69; P < .01 and 0.87 v
0.66 in the training and validation cohorts, respectively) [37] .
Other investigators used transfer-learning–based DL models
to classify symptomatic and asymptomatic plaques [38] . They
augmented and optimized 11 AI models using a transfer-
learning approach and showed the potential of the method
for plaque characterization [38] . Characterization of plaque
composition including the amount of lipid core, fibrous tis-
sue, and calcification based on US images is challenging due
to image noise and complexity of lesions [39] . Some investi-
gators developed a fully automatic characterization for these
features, using convolutional neural network, and found a cor-
relation of approximately 0.90 with the clinical assessment
[39] , which supports its potential use in clinical practice. Fi-
nally, several studies integrated imaging to non-imaging fea-
tures to assess plaque vulnerability and identify high-risk
patients [35] . For example, Huang et al [40] built a nomo-
gram using US-based radiomics and clinical features to iden-
tify symptomatic carotid plaques. This model outperformed
the clinical and conventional US model, with an AUC of 0.93
and 0.92 in the training and test cohorts ( v 0.723 and 0.580),
respectively [40] . 

Other imaging techniques were also used to develop AI-
based plaque characterization. Le et al [41] aimed to evaluate
the robustness and reproducibility of radiomic features from
carotid CTA to identify culprit carotid arteries in patients who
had prior cerebrovascular events. In a cohort of 41 patients
who had a stroke or transient ischemic attack (comprising 41
culprit and 41 non-culprit carotid arteries), the authors de-
termined the robustness of 93 radiomic features to identify
culprit and non-culprit arteries using ML [41] . After selection
of the 10 top non-redundant robust radiomic features, their
model achieved an AUC of 0.73 and an accuracy of 69%. Al-
though these results need to be confirmed in prospective co-
horts, this study found encouraging results to use carotid ra-
diomic features to improve stroke prediction. Other investi-
gators built a magnetic resonance imaging–based model us-
ing radiomics features and ML for differentiating symptomatic
from asymptomatic carotid plaques [42] . From a cohort of
162 patients with carotid stenosis, the model achieved an
AUC of 0.99 in the test cohort [42] . Another study aimed to
develop an ML-based algorithm to segment carotid plaque
components from a magnetic resonance scanner with both
traditional multicontrast vessel wall magnetic resonance se-
quences and three-dimensional simultaneous non-contrast
angiography and intraplaque hemorrhage sequence [43] . Sev-
eral ML algorithms were tested and demonstrated their inter-
est to segment and characterize plaque components, includ-
ing lipid rich/necrotic core, calcifications, and fibrous tissue
[43] . 
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3.2. Prediction of outcomes of patients after carotid 

intervention 

Several techniques can be used to treat carotid stenosis, in-
cluding carotid endarterectomy (CEA) or carotid artery stent-
ing (CAS) [5 ,6] . Both techniques carry a risk of serious post-
operative complications, and development of new prognos-
tic tools may help clinicians to better anticipate and prevent
them. 

For instance, Matsuo et al [44] built 5 ML algorithms to pre-
dict the risk of ischemic stroke within 30 days after carotid
intervention (CEA or CAS). From a cohort of 165 consecutive
patients, 17 clinical factors were used as input data in an XG-
Boost model, which demonstrated an accuracy of 86.2% to pre-
dict postoperative ischemic stroke [44] . In this study, internal
carotid artery peak systolic velocity, low-density lipoprotein
cholesterol, and the type of procedure (ie, CEA or CAS) were
identified as the most contributing factors of the predictive
model. Although further studies are required, these results
indicate the potential value of AI-based outcome prediction
models to guide decision making and patient selection for CEA
or CAS [44] . 

Other studies focused on the prediction of postoperative
outcomes after CAS. In a cohort of 317 patients, some inves-
tigators used an ANN to evaluate the risk of major adverse
cardiovascular events [45] . Based on input features composed
of 13 clinical risk factors, the ANN model predicted the occur-
rence of major adverse cardiovascular events with a sensitiv-
ity of 85.8%, specificity of 60.8%, and accuracy of 80.8% [45] .
Another study aimed to predict the risk of persistent hemo-
dynamic depression after CAS using ANN, multiple logic re-
gression, and SVM models [46] . In the test cohort, the ANN
model demonstrated better performances to correctly classify
and predict the outcome, with an AUC of 0.95 ( v 0.80 for mul-
tiple logic regression and 0.89 for SVM) [46] . Finally, ML was
also used for prediction of the risk of unplanned 30-day read-
mission after CAS [47] . From the US Nationwide Readmission
Database, 16,745 patients who underwent CAS were identified,
of whom 7.4% were readmitted within 30 days. A total of 42
clinical variables were used to develop the deep neural net-
work and the model produced an accuracy of 87.43%, showing
a proof of concept that ML-derived models may be of interest
to identify high-risk patients that may require a closer follow-
up. 

4. Challenges and perspectives 

The studies presented in this review illustrate the increas-
ing popularity, high potential, and areas of applications of
AI in modern management of vascular diseases. ML models
have shown their potential to predict outcomes of patients
with vascular diseases, including complications related to the
disease itself and complications potentially related to medi-
cal, surgical, and endovascular treatments ( Fig. 1 ). Taken to-
gether, these models can help to evaluate survival and risk of
complications and rehospitalization. In addition, the balance
between outcomes related to the disease and its treatment
might help to guide therapeutic decision making and patient-
tailored management. Although ML-based predictive models
hold great promise, several challenges remain. 

4.1. Accuracy of ML models and datasets used 

ML algorithms are dependent on the availability, quality, and
volume of data used for the training. The performances of
the models can therefore be limited, especially for rare dis-
eases or rare events and complications. Data used in the stud-
ies were very diverse (including clinical, biological, and imag-
ing) and study designs were heterogeneous from small single-
center studies to large retrospective national and administra-
tive databases. A large heterogeneity regarding types, sources,
formats, structures, quality, protocol of data acquisitions, stor-
age, sharing, transfer, and analysis is a field reality. Standard-
ization of data architecture is a critical and complex process to
accurately extract the data and bring them into a common and
digestible format to allow collaborative research and develop-
ment of AI/ML applications. Standardization is essential and
additionally the process must guarantee patient privacy, data
protection, and legal conformity regarding ethics regulation.
Multicenter and multidisciplinary collaboration is crucial to
build efficient and large-scale databases that can serve to train
and test AI models [48] . International vascular registries (such
as VASCUNET, European Vascular Research Collaborative, In-
ternational Consortium of Vascular Registries, or Society for
Vascular Surgery Vascular Quality Initiative) have been very
dynamic toward federating and coordinating research among
health institutions to better study the outcomes of patients
and build guidelines for clinical practice [48–50] . In addition
to vascular registries, which are mainly based on clinical and
administrative data, international consortia are currently ini-
tiated to put efforts together to build large-scale data reposi-
tories for vascular diseases (including imaging data). The Eu-
ropean Research Hub was also recently created and endorsed
by the European Society for Vascular Surgery to evaluate and
facilitate the development of multicenter and multinational
studies among European researchers [51] . These approaches
truly have the potential to bring major insights to the devel-
opment of AI models. 

4.2. Explainability and validation of AI models 

The vast majority of ML-based predictive models for vascu-
lar diseases have been developed and tested on retrospective
data. Most studies do not provide a detailed description of the
raw data, source codes, and algorithms developed, making it
difficult to assess the robustness of the methodology and hin-
dering reproducing and testing the method. In addition, AI-
based decision-making process, prediction, and classification
are hard to explain, as they function as a “black-box” process,
meaning that the output is achieved without providing expla-
nations on how it was reached. Given the complexity of the
models, robust and standardized methods to prove the accu-
racy, efficiency, and safety of the models are required to gain
trust among health care professionals and patients. External
validation in other cohorts is required and randomized con-
trolled trials would be of interest to assess the clinical benefits
and medico-economic impact of the AI models. The general-
izability of the predictive models is a key point that remains
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Fig. 1 – Artificial intelligence–based predictive models in vascular diseases. Machine learning (ML) models focused on the 
prediction of three main risks associated with vascular diseases: prediction of the progress of the disease and associated 

complications, prediction of survival and rehospitalization, and prediction of complications related to treatment. Together, 
ML-based predictive models offer new tools to guide decision making and develop precision medicine. AAA, abdominal 
aortic aneurysm; EVAR, endovascular aortic aneurysm repair; LEAD, lower extremity arterial disease; MACE, major adverse 
cardiovascular event. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to be explored, as it is possible that algorithm performances
can vary depending on demographic, ethnic, geographic, and
socioeconomic disparities. 

4.3. Implementation of AI predictive models in clinical 
practice 

Although evidence of the accuracy and benefits of ML-based
predictive models is a necessary condition, additional factors
are at stake. First, AI models can be computationally expen-
sive, which can limit their deployment, depending on the in-
frastructure and technical support available in health insti-
tutions. Second, it is important to think about how the model
can be integrated into the clinical workflow. Patients with vas-
cular diseases can have acute and severe conditions, requir-
ing decision making and urgent interventions. Computational
time should be studied carefully and fit with the intended
use. Management of vascular diseases is constantly evolving,
with variations of patient’s characteristics over time, advance-
ments in imaging analysis, and technical innovation for vas-
cular interventions. AI models have the potential to evolve
and improve over time, with adjunction and continuous up-
dating from large and dynamic datasets. Hence, it can be ex-
pected that the AI methods will continue to improve over
time with continuous updating. In addition, feedback from
end users associated with regular performance monitoring
will help to build real-time prognostication and personalized
therapy guidance. Adherence to, and health care profession-
als’ and patients’ perceptions of, AI solutions are key points
that should be taken seriously. AI-based predictive models de-
veloped to enhance care of patients with vascular diseases
can be considered as applications in the field of “narrow AI.”
As opposed to “general AI,” the applications are built for a
highly focused set of tasks. They are not meant to replace hu-
mans, but they are intended to be used by humans as a com-
plementary technology to improve care in a process during
which health care professionals keep their entire responsi-
bilities for medical expertise and decision making in accor-
dance with the patients’ wishes. The perception of AI can
be associated with fears of misuse or misconduct. The Euro-
pean Commission is currently building regulatory frameworks
elaborated by multidisciplinary groups of experts to promote
trustworthy, transparency, ethics, and equity within AI. Appro-
priate education and communication with a large audience
are mandatory to avoid misconception or misuse of these new
technologies [52] . 

5. Conclusions 

There are various innovative AI-driven tools to predict the
progress of vascular disease as well as treatment outcomes
and intervention-related complications. Although ML predic-
tive models hold great promise, their heterogeneity, the often-
limited sample size, and the paucity of external validation em-
phasize the remaining challenges for future implementation
in daily clinical practice. Although the road ahead is still long,
it appears reasonable to be open-minded as both clinicians
and researchers, and keep working toward safe, efficient, and
accurate innovative applications that are likely to aid the clin-
icians in the future in the decision-making process and per-
sonalized medicine. 

https://doi.org/10.1053/j.semvascsurg.2023.05.002
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