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Applications of artificial intelligence for patients with

peripheral artery disease
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ABSTRACT
Objective: Applications of artificial intelligence (AI) have been reported in several cardiovascular diseases but its interest
in patients with peripheral artery disease (PAD) has been so far less reported. The aim of this review was to summarize
current knowledge on applications of AI in patients with PAD, to discuss current limits, and highlight perspectives in the
field.

Methods: We performed a narrative review based on studies reporting applications of AI in patients with PAD. The
MEDLINE database was independently searched by two authors using a combination of keywords to identify studies
published between January 1995 and December 2021. Three main fields of AI were investigated including natural lan-
guage processing (NLP), computer vision and machine learning (ML).

Results: NLP and ML brought new tools to improve the screening, the diagnosis and classification of the severity of PAD.
ML was also used to develop predictive models to better assess the prognosis of patients and develop real-time pre-
diction models to support clinical decision-making. Studies related to computer vision mainly aimed at creating auto-
matic detection and characterization of arterial lesions based on Doppler ultrasound examination or computed
tomography angiography. Such tools could help to improve screening programs, enhance diagnosis, facilitate presur-
gical planning, and improve clinical workflow.

Conclusions: AI offers various applications to support and likely improve the management of patients with PAD. Further
research efforts are needed to validate such applications and investigate their accuracy and safety in large multinational
cohorts before their implementation in daily clinical practice. (J Vasc Surg 2023;77:650-8.)

Keywords: Artificial intelligence; Machine learning; Deep learning; Big data; Neural network; Natural language process-
ing; Peripheral artery disease
5,9-12
Peripheral artery disease (PAD) affects more than 230
million people worldwide.1,2 The disease is associated
with high rates of morbidity and mortality.3-7 The diag-
nosis relies on the combination of clinical examination,
measurement of ankle-brachial index, functional assess-
ment (treadmill test), and identification of arterial lesions
on imaging.8 Several imaging techniques can be used
including duplex ultrasound (US) examination, digital
subtraction angiography, computed tomography angi-
ography (CTA) and magnetic resonance angiography.8

Despite the elevated risks of cardiovascular mortality
and amputation, PAD remains underdiagnosed and
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underestimated. It is often diagnosed at an
advanced stage of the disease owing to low patient
awareness and high prevalence of asymptomatic disease
or atypical symptoms.5,9,13 In addition, several studies
have suggested that these patients may be under-
treated, especially considering best medical treatment,
pointing to the need to improve the use of evidence-
based recommended therapies in patients with PAD.14-17

Artificial intelligence (AI) is a broad topic that regroups
several fields including natural language processing
(NLP), which corresponds with applications of AI for writ-
ten or oral language, and vision, with applications for
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images or videos analysis.18 Machine Learning (ML) is
considered as a subfield of AI where algorithms are
used to give the ability to the system to learn18,19 (see
the Supplemental the glossary for definitions of technical
terms). AI-derived techniques such as ML have brought
new insights in cardiovascular diseases and have demon-
strated their interest to improve image segmentation,
identify patterns from patients data and develop predic-
tive scores.20-23 Although AI applications have been well-
described in cardiac or aortic diseases,21,24-28 their use in
patients with PAD has been less often reported.29 The
aim of this review was to summarize the main applica-
tions of AI in patients with PAD, discuss current limita-
tions, and highlight future directions.
AI IN RESEARCH AND PRACTICE

NLP
Medical notes and electronic health records (EHRs) pro-

vide a wide source of medical data. They include data in
a structured format (ie, laboratory test results) or unstruc-
tured free-text narratives (ie, medical notes, images,
video, or audio).30 EHRs have been used extensively in
epidemiological research because they are a source for
rapid and automated identification of large cohorts of
patients.31 However, the validity of the information
derived from EHRs depends on the quality, availability
of the data, accuracy (internal validity), appropriate selec-
tion criteria, interpretability and representativeness
(external validity) of the EHR to general target popula-
tion.31 The International Classification of Diseases (ICD)
provides terminology and classification that is consid-
ered as health data standard by the World Health Orga-
nization.32 Although the classification helped to
standardize coding and billing system, several studies
have highlighted that the use of ICD classification alone
is sometimes incomplete to identify patients’ diagnosis
and phenotypes, especially in PAD.33,34 Additional codes
defined by national systems are, therefore, often used
to complete the characterization of the disease and its
treatment.
Identification of patients with PAD. NLP techniques

have received increasing attention to enhance analysis
of biomedical texts35 and several studies aimed to use
it to improve identification of PAD based on medical
records (Table I). Using a dataset of 1569 patients
(including 806 patients with PAD and 763 controls), Afzal
et al36 developed a NLP system for automatic ascertain-
ment of PAD cases from clinical narrative notes. The NLP
algorithm was knowledge driven and had two main
components, including text processing and patient
classification.36 The performances of the NLP were
compared with two previously developed models based
on ICD-9 diagnostic codes and demonstrated better
accuracy.36 The NLP algorithm developed by Afzal et al
offers the advantage to be applied on clinical notes
including progress notes collected during the hospitali-
zation course or during outpatient contacts. The algo-
rithm used keywords and rules independent from billing
codes, improved the accuracy to identify PAD, and
offered the perspective to potentially implement it on
other EHR systems. The authors further improved the
NLP method by developing and validating sub-
phenotyping algorithms to identify critical limb-
threatening ischemia (CLTI) from clinical notes.37

Compared with algorithms based on ICD-9 billing
codes, the NLP algorithm showed a higher positive pre-
dictive value and specificity to identify CLTI. Such tools
offer perspectives to improve the automatic identifica-
tion of PAD and CLTI from clinical notes and brings po-
tential to further link it to clinical decision support tools.37

Savova et al38 also developed NLP algorithms to identify
PAD cases from radiology notes (including lower ex-
tremity angiograms or US examination) and demon-
strated an overall agreement of 0.93 between the system
and the gold standard created manually and consisting
of 223 positive, 19 negative, 63 probable, and 150 un-
known cases. Finally, using a cohort of 6861 patients,
another study aimed to leverage NLP to identify more
accurately patients with PAD in EHRs compared with a
structured data-based approach.39 The median of the
area under the curve (AUC) was significantly higher with
the NLP system compared with the structured-based
approach (0.888 vs 0.801; P < .0001).
Perspectives and limits. Altogether, NLP offers per-

spectives of applications in clinical research, by
improving large-scale PAD search and in clinical prac-
tice to facilitate PAD identification and targeted in-
terventions. In addition, several studies have
highlighted the interest of AI algorithms to automate
the literature screening procedures.40-42 AI could be of
use to provide a quick and precise overview of current
and relevant literature. It can also reveal hidden con-
nections between findings and data, bringing new
perspectives and hypotheses. It offers the potential to
decrease workflow and it would be worth investigating
its applications to enhance literature search and
evidence-based decisions for patients with PAD.
Although these preliminary results are promising,
several challenges remain before such technologies
can be implemented in both research and daily clinical
practice. First, all the methods developed would
require external validation in multiple clinical centers
to assess the generalizability of the results. Moreover,
because there is increasing evidence for substantial
differences between countries and reimbursement
systems, a multinational validation seems appropriate.
The interpretability of the algorithms remains difficult
to assess. Multidisciplinary collaboration between cli-
nicians, computer scientists, and biostatisticians should
be promoted in all the stages of creation and validation
of the NLP algorithms to enhance the development of



Table I. Summary of the main studies investigating the use of Natural Language Processing (NLP) for patients with pe-
ripheral artery disease

Aim Study design Results References

Develop a NLP system for
automated ascertainment
of PAD cases from clinical
narrative notes

Dataset of 1569 PAD patients: 806 PAD
and 763 controls.

Comparison of the performance of the
NLP algorithm to previously validated
algorithms based on relevant ICD-9
diagnostic codes (simple model) and
a combination of ICD-9 codes with
procedural codes (full model).

The NLP algorithm
demonstrated higher
accuracy, higher PPV, higher
specificity compared with
the simple and full model.

Afzal et al36 2017

Extend a previously validated
NLP algorithm for PAD
identification to develop a
subphenotyping NLP
algorithm for identification
of CLI cases from clinical
notes.

Dataset of 792 PAD patients: 295 CLI and
497 controls (without CLI), 270 336
clinical notes.

Comparison of the performance of the
CLI-NLP algorithm with CLI-related
ICD-9 billing codes.

The CLI-NLP algorithm had
higher PPV and higher
specificity compared with
the CLI-related ICD-9 billing
codes.

Afzal et al37 2018

Apply, extend and evaluate
an open source clinical NLP
system for the task of
phenotype extraction from
radiology notes for
identifying PAD cases

Extension of an open source clinical NLP
system (Mayo’s Clinical Text Analysis
and Knowledge Extraction System) for
the discovery of PAD cases from
radiology reports.

Comparison to manually created gold
standard including 223 positive, 19
negative, 63 probable and 150
unknown cases.

The overall accuracy
agreement between the
system and the gold
standard was 0.93.

Savova et al38 2010

Leverage NLP to more
accurately identify patients
with PAD in an EHR
compared with structured
data-based approach

Dataset of 6861 patients: 3746 patients
with PAD and 3115 without PAD

Comparison with an administrative
data-based LASSO approach using
DeLong test

The median of the AUC for the
NLP was significantly higher
compared with the LASSO-
based approach.

Weissler et al39 2020

ABI, Ankle-brachial index; CLI, critical limb ischemia; EHR, electronic health record; ICD, International Classification of Diseases; LASSO, least absolute
shrinkage and selection operator; NPV, negative predictive value; PAD, peripheral artery disease; PPV, positive predictive value.
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efficient systems that meet the expectations and needs
in medical practice.43

ML
Identification and diagnosis of patients with PAD.

Several studies developed ML algorithms to identify PAD
(Table II). In a cohort of 1755 patients admitted for elec-
tive angiography, Ross et al44 used supervised ML algo-
rithms based on diverse data including clinical,
demographic, imaging and genomic information to
identify patients with PAD. The ML models showed bet-
ter performance than logistic regression models to
identify PAD, with an AUC of 0.87 versus 0.76 (P ¼ .03).44

In another cohort of 354 patients, McCarthy et al46 aimed
at combining biomarkers with clinical risk factors to
identify obstructive PAD using ML. ML identified the
variable predictive of obstructive PAD and the final score
included one clinical variable (history of arterial hyper-
tension) and six biomarkers (midkine, kidney injury
molecule-1, IL-23, follicle-stimulating hormone,
angiopoietin-1, and eotaxin-1). The AUC for identification
of obstructive PAD was 0.84 and higher scores were
associated with increased severity of angiographic ste-
nosis.46 Finally, ML was also used to investigate the
relationship between functional limitation and PAD
symptoms.47 In this study involving 703 patients, func-
tional limitation was evaluated by a 6-minute walk dis-
tance and symptoms using a quality-of-life
questionnaire. Interestingly, this study highlighted a
nonlinear relationship between these two variables.47

Their results suggested that ML could bring new tools
to help optimizing diagnostic strategy to early detect
PAD, especially in asymptomatic patients.47

Evaluation of the prognosis of patients with PAD. In
addition, to enhance the detection and the diagnosis
of PAD, improving the evaluation of the outcomes and
the prognosis of patients is a major concern. A few pre-
dictive models have previously been built toward this
aim,4,51,52 but they presented some limitations because
they were built on selected groups of patients with PAD.
Automatic extraction of medical data from EHRs may
help to extend the numbers of patients included to build
accurate patient specific risk prediction models.53 Some
have already been deployed to estimate cardiovascular
risks.54-56 In a retrospective analysis of 87,293 patients
with PAD, Kreutzburg et al7 developed a prognostic
score to predict the risk of amputation using Cox



Table II. Summary of the main studies investigating the use of machine learning (ML) for patients with peripheral artery
disease (PAD)

Aim Study design Results References

Develop ML algorithms for the
identification of PAD and the
prognostication of mortality risk

Dataset from 1755 patients who
presented for elective coronary
angiography.

Development of multiple supervised
ML algorithms form diverse clinical,
demographic, imaging and
genomic data.

Comparison of the ML model to
standard stepwise linear regression
models.

ML models outperformed stepwise
logistic regression models both for
the identification of patients with
PAD and predicting future
mortality.

Ross et al44 2016

Develop a novel predictive model
using MLmethods on EHR data to
identify which PAD patients are
most likely to develop MACCE

Dataset of 7686 patients included in
learning the predictive models.

Development of predictive models
using structured (coded) and
unstructured (text) data.

The best predictive model used
almost 1000 variables and
accurately determined which PAD
patients would go on to develop
MACCE with an AUC of 0.81.

Ross et al45 2019

Combine biomarkers and clinical
risk factors to increase the
accuracy of predicting clinically
significant PAD using ML

Dataset of 354 patients referred for
diagnostic peripheral and/or
coronary angiography, 132 patients
with PAD.

Development of ML predictive
models using more than 50 clinical
variables and 109 biomarkers.

The final ML score consisted of 1
clinical variable (history of
hypertension) and 6 biomarkers
and had a cross-validated AUC of
0.84.

McCarthy et al46

2018

Explore the relationship of
functional limitation and PAD
symptoms

Dataset of 703 patients from an
administrative database.

Development of ML analysis to plot
functional tests against PAD
severity.

ML allowed exploration of nonlinear
relationship between functional
limitation and symptom severity.

Qutrio Baloch
et al47 2020

Develop a personalized prediction
model that utilizes patient
characteristics prior to CLI
diagnosis to predict 1-year all-
cause hospitalizations and total
annual health care costs

Database of 3189 patients.
Use of a novel Bayesian ML platform
to build models to identify
predictors of all-cause
hospitalizations and total annual
all-cause health care costs.

The main predictors of all-cause
hospitalizations were skin and
subcutaneous tissue infections,
cellulitis, abscess, use of
nonselective beta-blockers, other
aftercare, and osteoarthritis.

The leading predictors for total all-
cause costs included region of
residence and comorbid health
conditions.

Berger et al48

2020

Develop an assessment tool of the
femoral PAD diagnosis and
treatment using a RBFNN

Dataset of 186 patient records with 16
characteristic features associated
with a binary treatment decision
(being medical or surgical
treatment).

Development of a RBFNN to assess
PAD diagnosis and treatment.

RBFNN demonstrated its potential
interest as an effective assessment
tool for femoral PAD treatment.

Yurtkuran et al49

2013

Examine factors associated with 90-
day hospital readmission after
vascular procedures using big
data and ML system.

Dataset of 246 405 patients, of whom
30.3% were readmitted within
90 days.

Development of predictive model of
90-day hospital readmission for
patients undergoing elective
carotid endarterectomy,
aortofemoral bypass/aortic
aneurysm repair, and femoral-
distal arterial bypass.

Shrinkage discriminant analysis was
the best performing model to
predict 90-day readmission.

Main variables for the best predictive
model included length of stay in
the hospital, comorbidity scores,
endarterectomy procedure, and
elective admission type.

Amato et al50

2020

ANN, Artificial neural networks; AUC, area under the curve; MACCE, major adverse cardiac and cerebrovascular events; NPV, negative predictive value;
PPV, positive predictive value; RBFNN; radial basis function neural network; ROC, area under the receiver operating characteristic curve.
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regression model. Arruda-Olson et al57 further aimed to
automatically extract data from EHRs and develop a
real-time and individualized risk prediction model. The
model allowed to stratify patients’ mortality by sub-
groups, bringing perspectives to implement the tool to
support clinical decision-making.57 ML techniques allow
the analysis of data in a hypothesis-free manner and their
use to predict future mortality of patients with PAD have
been reported in other studies.44 Ross et al45 further
developed another model to predict major adverse car-
diovascular and cerebrovascular events using ML on
EHRs, showing the interest of the technique to predict
mortality as well as complications.
Other prediction models have been developed to bet-

ter assess the risk of clinical complications related to
PAD (Table II). As an example, a prediction system for
chronic leg ulcer was created from a cohort of 80 pa-
tients with PAD based on fuzzy logic.58 The algorithm
provided a reliable score for the risk of ulcer and could
be of use for classification of PAD.58 Another study devel-
oped a personalized prediction model based on baseline
patients’ characteristics prior to CLTI diagnosis to predict
1-year all-cause hospitalization.48 The model identified
main predictors of all-cause hospitalizations and could
potentially be a useful tool to identify at risk patients
and target them for early prevention and intervention
to deliver cost-effective medical services.48

Evidence-based decision and decision-making. The
therapeutic options for patients with PAD depend on
several factors including anatomic locations and severity
of lesions, symptoms, functional tests, comorbidities, and
risks related to surgery and anesthesia.6,59 Despite cur-
rent guidelines, the choice of the most appropriate
therapeutic option can be difficult to evaluate and a
multidisciplinary approach can be useful for the man-
agement of patients.8,49 AI could bring new tools to
support evidence-based decision and guide clinicians in
decision-making. Some investigators aimed to develop a
clinical decision support system for classifying the treat-
ment options regarding femoral PAD.49 Using a radial
basis function neural network, they showed that such AI
algorithm could be useful to enhance evidence-based
decision.49 Finally, Amato et al50 aimed to develop ML
models to predict 90-day hospital readmission in pa-
tients who underwent vascular repair including elective
carotid endarterectomy, aortofemoral bypass, aortic
aneurysm repair, or femoral-distal arterial bypass. Their
study identified main variables impacting on 90-day
hospital readmission and included length of stay in the
hospital, comorbidity scores, endarterectomy procedure,
and elective admission type.50 This model may help to
better stratify patients to prevent or anticipate un-
planned readmission.50 Although these methods would
require validation in larger cohorts of patients, the results
are encouraging to develop new tools to enhance pre-
cision medicine in patients with PAD.
Limits and perspectives. ML brings new tools to better
detect, classify PAD and predict the outcomes of pa-
tients to anticipate and optimize cares. Nevertheless,
there are current limitations. Despite encouraging re-
sults, the sensitivity and/or the specificity of the models
developed are not perfect and would have to be taken
in consideration before using them in practice. The
models were developed on datasets that have been
collected for a specific aim and their accuracy depends
on the quality, accuracy, availability, and representative-
ness of the data used. Beyond this sample and exclusion
bias, further challenges have to be considered appropri-
ately, for example, using different technical solutions for
training and validation may lead to measurement bias
while insufficient methods may introduce algorithmic
bias. External cross-validation from data with multiple
institutions and different countries would help to eval-
uate the robustness of the systems developed. Finally, ML
functions as a black box and the accountability of the
factors implemented in the predictive models can
sometimes be difficult to explain. Traditional epidemio-
logic approaches may help to identify causal links and
ML could be a complementary tool to investigate and
take into consideration the nonlinear relationships be-
tween variables. Despite the many advantages of ML for
both research projects and clinical care, it must be
emphasized that these technologies also introduce new
challenges. An important aspect of ML that gets
increasing attention is related to the individual privacy of
patients.60 It seems reasonable and for certain projects
even inevitable to involve experienced information sci-
entists to secure data privacy-compliant ML.60

Vision
Doppler US examination. Imaging plays a central role

in the management of patients with PAD.3,8 US imag-
ing provides extensive information on arterial anatomy
and hemodynamics and has the advantage of being low
cost, noninvasive, and easily available. Doppler US ex-
amination can be used for the screening of PAD, for
preoperative planning as well as the postoperative
follow-up of PAD. However, with two-dimensional US
examination, it is difficult to visualize the lower limb
vascular tree within an acceptable time frame and the
measurements of atherosclerotic lesions can be associ-
ated with interobserver variations.61 Several three-
dimensional US systems have thus been developed for
vascular imaging,62 and Janvier et al61 aimed to enhance
it by creating a three-dimensional US imaging robotic
system to control and standardize the acquisition pro-
cess by scanning arterial lower limb segments. The ac-
curacy of the robotic system to locate and quantify lower
limb vessel stenoses was evaluated in a phantom model
as well as in vivo on a volunteer and showed encouraging
results to facilitate identification and evaluation of ste-
notic lesions.63-65



Fig. Main applications of artificial intelligence (AI) for patients with PAD. CLTI, Critical limb-threatening ischemia;
ML, machine learning; PAD, peripheral artery disease.
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The interpretation of US examination for PAD also re-
quires to analyze and interpret pressures and wave-
forms. The use of artificial neural networks (ANN) to
classify photoelectric plethysmography (PPG) wave-
forms was early investigated by Allen and Murray.66

They successfully trained an ANN to distinguish PPG
pulses from normal and diseased lower limb arteries.66

The performance of the algorithm was tested in 200
patients and showed a sensitivity of 92% and a speci-
ficity of 63%, with a diagnostic accuracy for PAD of
80%.67 ANN demonstrated better performances to
classify arterial pulse waveforms as compared with
classification techniques based on linear discriminant
classifier or k-nearest neighbor classifier.68 AI tech-
niques could be used to recognize and differentiate
the signals and waveforms to identify, classify, and eval-
uate the severity of atherosclerotic lesions. Using a vir-
tual patient database of 28,868 patients, Jones et al69

developed ML algorithms to identify vascular diseases
including carotid artery stenosis, subclavian artery ste-
nosis, abdominal aortic aneurysm and PAD. The
sensitivity and specificity for PAD were greater than
90%. Kim et al70 also developed deep learning (DL)
models to diagnose PAD based on the analysis of
PPG and showed the accuracy of the method in
2000 virtual patients. From 5761 US examination
studies on PAD in which blood pressure and waveform
data were available, Luo et al71 developed a DL model
to classify aortoiliac, femoropopliteal, and trifurcation
disease. The DL algorithm showed an accuracy of 97%
for predicting normal cases, 88.2% accuracy for aortoil-
iac disease, 90.1% for femoropopliteal disease, and
90.5% for trifurcation disease.71 The study demon-
strated the ability of the ML models to differentiate
normal from diseased arterial systems and classify the
extent of vascular disease.71 Such application could
help to facilitate US interpretation, save time and
reduce variability. Finally, the proof of concept of the
use of DL to identify PAD based on PPG signals in
real-world medical practice was then demonstrated
in a cohort of 214 participants, where the overall test
sensitivity was 86.6% and the specificity 90.2%.72 Such
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a tool could be of interest to automate and facilitate
PAD diagnosis using affordable and noninvasive US
technique. In time, it could be used potentially to
enhance screening programs and improve the detec-
tion of patients with PAD.
CTA. CTA is another imaging technique that can be

used to identify arterial lesions, plan the treatment and
determine the feasibility and modality of invasive treat-
ments.3,8 Accurate detection and classification of le-
sions is necessary to determine the optimal
revascularization strategy.73 The interpretation and
analysis of CTA is time consuming, tedious, requires
expertise of the operator, and can be associated with
variations among studies.74-76 Automated vessel identi-
fication in patients with PAD is challenging owing to the
heterogeneity of the presentation of the disease, the
discontinuity of vascular flow channels owing to steno-
ses, presence of atherosclerotic calcifications, or pres-
ence of preexisting stents that can cause artefacts.77 DL
could provide a feasible solution to automatically detect
and classify lower extremity arterial plaque. In a cohort
of 265 patients who underwent lower extremity CTA, Dai
et al78 trained a convolutional neural network to classify
the lower extremity artery segments according to the
degree of stenosis. The model demonstrated good
performance, with an accuracy of 91.5% in classifying
above-knee artery and 90.9% in classifying below-knee
artery.78 Such an application could be used potentially
as an auxiliary tool to locate the arterial plaque, improve
the detection of PAD, help to better classify lesions, and
optimize the workflow and screening of the disease. ML
algorithms require a large volume of data to be trained
and scientific research in this field is limited by the fact
that obtaining labeled data to serve as ground truth is
difficult and require manual segmentation by human
experts, which can be tedious and extremely time
consuming.77 To cope with this current limit, Mis-
telbauer et al77 proposed a novel semiautomatic vessel
tracking approach for peripheral arteries to enhance the
creation of annotated training data by human experts
by limiting manual interactions and decreasing pro-
cessing time. Their method enabled expert physicians to
identify all relevant lower extremity arteries, with an
average sensitivity of 92.9%, an average specificity and
overall accuracy of 99.9%.77 Such an approach requires
less user interaction, offering perspectives for clinical
practice, but also for clinical research by facilitating the
generation of labeled ground truth data that could then
be further used for ML. Although AI offers interesting
perspectives to automate imaging analysis and detec-
tion of arterial stenosis, further research is required to
investigate the generalizability of the applications
developed. External validation in multicenter studies is
required and would be of interest to further explore the
accuracy of the algorithms in subpopulation known to
develop specific patterns of arterial lesions, such as
diabetic patients or patients with severe chronic kidney
disease.79-81

CONCLUSIONS
AI offers a wide range of perspectives to support and

likely improve the management of patients with PAD
(Fig). Although PAD is an underestimated condition,
NLP and ML bring new tools that may help to better
identify and diagnose the disease, classify complex phe-
notypes, and develop predictive models to evaluate the
outcomes and prognosis of patients. Imaging analysis
through automatic detection and characterization of
arterial lesions could also help to improve screening pro-
grams and offers new tools for clinicians to improve
workflow and better plan the surgical intervention. In
addition, PAD is often undertreated.14-17 AI may bring
new tools to diagnose the disease at early stage and
may help to develop precision medicine and propose a
personalized therapeutic approach by taking into ac-
count the severity of PAD balanced with patients’ risks.
Although perspectives of applications are very wide, AI
medical devices or software are not yet validated for
use in daily clinical practice for patients with PAD. This
factor underlines the real need to pursue research efforts
in this field and should encourage multidisciplinary
collaboration between engineers and health profes-
sionals to enhance validation and implementation of AI
devices in medical practice.
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Glossary of technical terms
Artificial Neural Network (ANN). ANN are DL algo-

rithms inspired by biological nervous system in which
neurons transmit signals to another one. They are
composed of node layers, containing an input layer,
one or more hidden layers, and an output layer. Each
node, or artificial neuron, connects to another and has
an associated weight and threshold which weaken or
enhance the signal during the learning process. Neural
networks rely on training data to learn and improve their
accuracy over time. The black box often refers to hidden
layers because it is not known how the neural network
derived a specific result.
Black box. The decision-making process of a ML model

is often referred to as a black box. Although the users and
researchers know the inputs and the outputs, the pro-
cess and what is going on inside hidden layers are not
straightforwardly interpretable to humans.
Convolutional neural network (CNN). A CNN is class of

ANN biologically inspired from the connectivity patterns
and organization of neurons in the visual cortex of hu-
man brain. CNN is composed of multilayer networks
with mathematical models that make them very effi-
cient and often used for image analysis including pro-
cessing, detection, segmentation or visual recognition.
Cox regression model. A statistical method used for

investigating the effect of several variables upon the
time for a specific event to happen. It builds a predictive
model for time-to-event data.
Deep learning (DL). A type of ML method that allows

the model to be fed and learn from a large quantity of
data. DL regroups various algorithms among which neu-
ral networks are most commonly used for medical
applications.
Fuzzy logic. An approach to compute the degree of

truth in a way that mimics the decision-making process
in humans. Human decision-making often includes a
wide range of possibilities between yes or no to a specific
question or problem to solve. Fuzzy logic is designed to
solve problems by considering all available information
and making the best possible decision given the input.
k-Nearest neighbor classifier. A nonparametric super-

vised ML method used for classification.
Linear discriminant classifier. A statistical method

used to find a linear combination of features that charac-
terizes or separates two or several classes of objects or
events. It is used for classification.
Logistic regressionmodel. A statistical method used to

predict the probability of a certain class or event to
happen.
Machine learning (ML). ML corresponds with algo-

rithms that have the ability to learn and automatically
improve their performance through experience and use
of data. ML algorithms are built from training data to
feed the model and to learn how to solve the problem
for which it is designed. Several techniques can be
used to train the models including supervised, unsuper-
vised or reinforcement learning.
Radial basis function neural network (RBFNN). A type

of ANN that is commonly used for function approxima-
tion problems. They are typically composed of three
layers: an input layer, a hidden layer (with radial basis
function as activation function) and an output layer.
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