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ABSTRACT
Objective: Abdominal aortic aneurysm (AAA) is a life-threatening disease, and the only curative treatment relies on open
or endovascular repair. The decision to treat relies on the evaluation of the risk of AAA growth and rupture, which can be
difficult to assess in practice. Artificial intelligence (AI) has revealed new insights into the management of cardiovascular
diseases, but its application in AAA has so far been poorly described. The aim of this review was to summarize the current
knowledge on the potential applications of AI in patients with AAA.

Methods: A comprehensive literature review was performed. The MEDLINE database was searched according to the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The search strategy used a combination
of keywords and included studies using AI in patients with AAA published between May 2019 and January 2000. Two
authors independently screened titles and abstracts and performed data extraction. The search of published literature
identified 34 studies with distinct methodologies, aims, and study designs.

Results: AI was used in patients with AAA to improve image segmentation and for quantitative analysis and character-
ization of AAA morphology, geometry, and fluid dynamics. AI allowed computation of large data sets to identify patterns
that may be predictive of AAA growth and rupture. Several predictive and prognostic programs were also developed to
assess patients’ postoperative outcomes, including mortality and complications after endovascular aneurysm repair.

Conclusions: AI represents a useful tool in the interpretation and analysis of AAA imaging by enabling automatic quanti-
tative measurements and morphologic characterization. It could be used to help surgeons in preoperative planning.
AI-driven datamanagementmay lead to the development of computational programs for the prediction of AAA evolution
and risk of rupture as well as postoperative outcomes. AI could also be used to better evaluate the indications and types of
surgical treatment and to plan the postoperative follow-up. AI represents an attractive tool for decision-making and may
facilitate development of personalized therapeutic approaches for patients with AAA. (J Vasc Surg 2020;72:321-33.)

Keywords: Artificial intelligence; Machine learning; Deep learning; Aneurysm; Abdominal aortic aneurysm; Open repair;
Endovascular aneurysm repair; EVAR
Abdominal aortic aneurysm (AAA) represents a life-
threatening disease.1,2 Curative treatment relies on surgi-
cal repair, which can be performed by open surgery or
endovascular aneurysm repair (EVAR).3,4 Guidelines of
the Society for Vascular Surgery and the European Society
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for Vascular Surgery have defined recommendations for
the management of patients with AAA, and the decision
to treat relies on the evaluation of the balance between
surgical risk and the risk of AAA growth and rupture.3,4

Even though large initial maximal diameter is a well-
established independent risk factor for AAA rupture, other
factors for rupture, including general characteristics of the
patients (such as female sex, hypertension, or smoking)
and factors related to the aneurysm itself (including AAA
growth rate, wall stress, wall stiffness, wall tension, and
rapid increase of intraluminal thrombus), have been iden-
tified.3 In practice, the risk of progression and rupture can
be difficult to predict, and the decision-making strategy
for AAA repair and itsmanagement varies widely between
countries despite common guidelines from professional
societies.5 This underlines the need to develop a more
personalized therapeutic approach that could take into
account the patients’ general and clinical characteristics
as well as a detailed characterization of AAA geometry
and morphology.
The application of data science to medicine has pro-

vided novel insights in the era of precision medicine,
aiming to propose care that is tailored to the individual
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patient. Artificial intelligence (AI) corresponds to the abil-
ity of a computational program to perform tasks that are
commonly associated with intelligent beings. Among AI
programs, machine learning allows us to uncover pat-
terns and to make decisions from large data sets without
the need of explicit instructions or a priori assumptions.
Numerous algorithms can be used, and machine
learning is in general classified into two main categories:
unsupervised and supervised learning.6,7

In supervised learning, the program is trained to learn
associations between inputs and outputs in a database
in which the outcomes of interest are labeled and
defined by a human supervisor. It uses a selection of fea-
tures that are processed and weighted. Once the associ-
ations have been identified on the basis of existing data,
they can be used to predict new data.8,9 It is generally
used to develop models of prediction and classification
or to identify which variables are most relevant to the
outcomes.
In contrast, unsupervised learning does not require any

labeled or annotated data. The program aims to identify
consistent patterns in the data instead of trying to fit the
data to an outcome.10 Unsupervised learning allows the
exploration of complex relationships among variables
in a data set and leads to the identification of hidden
patterns without any prior label or annotation available.
The application of machine learning has been investi-

gated in a wide range of medical fields including imag-
ing and biologic analysis and could potentially lead to
the development of new approaches for the diagnosis,
prognosis, or treatment of patients.11,12 Several studies
have highlighted the interest of AI in cardiovascular dis-
eases.10,13,14 However, its application in patients with
AAA has so far been poorly described. The aim of this re-
view was to summarize current knowledge and potential
applications of AI in AAA and to discuss current limita-
tions and future directions.

METHODS
Search strategy and eligibility criteria. A literature

search was conducted using PubMed/MEDLINE data-
base according to the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses. Two authors (F.L.,
J.R.) independently performed a literature search of ar-
ticles published between May 2019 and January 2000
using a combination of the following terms: “artificial
intelligence,” “deep learning,” “machine learning,” “neural
network,” “convolutional neural network,” “segmentation,”
“aneurysm,” “aortic aneurysm,” “abdominal aortic aneu-
rysm,” “open repair,” and “endovascular aneurysm repair”
(Supplementary Table, online only).
Inclusion criteria for article selection were publications

written in the English language including patients with
AAA in which a technique related to AI was used. AI
was defined as a computational program able to
perform tasks that are characteristics of human
intelligence, including image and pattern identification,
recognition, analysis, learning from past experience,
problem solving, and decision-making. Titles and ab-
stracts of the publications identified using the search
strategy were reviewed. Eligibility was independently
checked by two authors (F.L., J.R.) and confirmed with
two other authors (C.A., M.C.) in case of disagreement.
Case reports and unpublished data were excluded. The
flow chart depicting the process for literature search
and selection is presented in the Fig.

Data management. The aim of the study and its
design, the number of patients and their clinical and pro-
cedural characteristics, the material, the methodology,
and the techniques related to AI were extracted and
analyzed from each published study. Given the wide va-
riety of aims, study designs, and techniques, a narrative
literature review was performed. The studies were classi-
fied into three main topics: image segmentation and
automation, characterization of AAA geometry and fluid
dynamics, and prediction and prognosis of patients with
AAA (Fig). The detailed list of selected articles is pre-
sented in Table I.

Terminology. The definitions of general and technical
terms related to AI used in this review are summarized
in Table II.

IMAGE SEGMENTATION AND AUTOMATION
Imaging is a key step for the diagnosis of AAA.

Computed tomography (CT) imaging remains the most
commonly used technique for operative planning as it
provides a complete data set of the entire aorta and ac-
cess vessels, allowing examination of the extent and
morphology of the AAA as well as identification of coex-
istent occlusive disease.3,4 Image segmentation corre-
sponds to the process of partitioning a digital image
into multiple segments (sets of pixels). The pixels are
assigned a label so that pixels with the same label share
similar properties. It is generally used to process medical
images, allowing the tagging of regions of interest, anal-
ysis of sets of contours, and creation of three-dimensional
(3D) reconstructions.

Aneurysm segmentation. Several methods have been
proposed for aneurysm segmentation. de Bruijne et al17

proposed an interactive method for aneurysm sac seg-
mentation from a data set of CT angiography (CTA) ob-
tained from 23 patients. The method was inspired from
the active shape model segmentation, which consists of
combining the statistical knowledge of object shape and
variations with a local appearance model near the object
contours. After manual segmentation of the first slice,
the method automatically detects the contour in sub-
sequent slices, allowing rapid processing of the entire
volume of the AAA. The method exhibited accurate
segmentation, with manual intervention required in only



Fig. Flow chart depicting the process for the literature search and selection of the studies. AAA, Abdominal aortic
aneurysm.
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one of six slices, thereby laying the groundwork for a
semiautomatic approach helping to reduce the time for
expert segmentation. Other investigators proposed a
semiautomatic method requiring minimal user assis-
tance for 3D segmentation of AAA from CTA images.15 A
two-step segmentation, first for the inner and then for
the outer border, was performed. A 3D-deformable
model was implemented with level set algorithms and
used to measure the aneurysm area. The results of this
semiautomatic segmentation were then compared with
manually corrected methods and exhibited relative er-
rors close to those obtained with human experts.
The gain of time obtained from these methods led in-

vestigators to go further and to propose methods to
allow the measurement of volume and morphologic as-
pects of AAA. The proposed method by Zhuge et al19 re-
lies on five main steps (preprocessing, global region
analysis, surface initialization, local feature analysis, level
set segmentation) and was tested on a database of 20
CTA images of patients. The “gold standard” was estab-
lished by collecting the results of manual tracing of three
experts. The mean volume overlap was 95.3% 6 1.4%, and
themean segmentation time per patient was reduced to
7.4 6 3.8 minutes vs 20 to 30 minutes per patient with
the human manual method. These results are encour-
aging to further use of this kind of approach in clinical
practice for an accurate, precise, and reproducible seg-
mentation of AAA from CT images. Other authors pre-
sented a finite element analysis-based approach to
analyze AAA images.24 This software allows an automatic
analysis of CT or magnetic resonance images but never-
theless requires a semiautomatic segmentation of the
AAA and the intraluminal thrombus.
CT and magnetic resonance imaging are two comple-

mentary imaging modalities. CT offers a better visualiza-
tion of calcifications; magnetic resonance imaging
allows a more precise distinction of soft tissues and intra-
luminal thrombus.49 Multimodal imaging can combine
the advantages of both techniques. In this setting,
Wang et al28 proposed the use of neural network fusion
to allow a shared representation of aorta in both CT
and magnetic resonance images. This approach could
improve training speed and allow performance of multi-
modal AAA image segmentation.
Finally, Lareyre et al29 recently proposed a fully auto-

mated pipeline to detect the aortic lumen and to char-
acterize the AAA, including the presence of
intraluminal thrombus and calcifications. The method
was tested on a set of 40 patients with CTA images
and demonstrated a good correlation with results ob-
tained from manual segmentation by human experts,
with a computational time of <1 minute per patient.



Table I. List and year of publication of the selected articles

Topic Title Year Reference

Image segmentation
and automation

3-D image analysis of abdominal aortic aneurysm 2000 15

Adapting active shape models for 3D segmentation of
tubular structures in medical images

2003 16

Interactive segmentation of abdominal aortic
aneurysms in CTA images

2004 17

Segmentation of thrombus in abdominal aortic
aneurysms from CTA with nonparametric statistical
grey level appearance modeling

2005 18

An abdominal aortic aneurysm segmentation method:
level set with region and statistical information

2006 19

Three-dimensional thrombus segmentation in
abdominal aortic aneurysms using graph search
based on a triangular mesh

2010 20

3D segmentation of abdominal aorta from CT-scan and
MR images

2012 21

Geometrical methods for level set based abdominal
aortic aneurysm thrombus and outer wall 2D image
segmentation

2012 22

A proposal of texture features for interactive CTA
segmentation by active learning

2014 23

BioPARR: a software system for estimating the rupture
potential index for abdominal aortic aneurysms

2017 24

Generic thrombus segmentation from pre- and post-
operative CTA

2017 25

Fully automatic detection and segmentation of
abdominal aortic thrombus in post-operative CTA
images using deep convolutional neural networks

2018 26

Abdominal aortic aneurysm calcification: trying to
identify a reliable semiquantitative method

2018 27

Neural network fusion: a novel CT-MR aortic aneurysm
image segmentation method

2018 28

A fully automated pipeline for mining abdominal aortic
aneurysm using image segmentation

2019 29

Characterization of
AAA geometry and
fluid dynamics

Three-dimensional geometrical characterization of
abdominal aortic aneurysms: image-based wall
thickness distribution

2009 30

Semiautomatic vessel wall detection and quantification
of wall thickness in computed tomography images of
human abdominal aortic aneurysms

2010 31

Quantitative assessment of abdominal aortic aneurysm
geometry

2011 32

Hemodynamic flow modeling through an abdominal
aorta aneurysm using data mining tools

2011 33

Machine learning approach for predicting wall shear
distribution for abdominal aortic aneurysm and
carotid bifurcation models

2018 34

Prediction and
prognosis of
patients with AAA

Ruptured abdominal aortic aneurysm: a novel method
of outcome prediction using neural network
technology

2000 35

Analysis and computer program for rupture-risk
prediction of abdominal aortic aneurysms

2006 36

Informed prognosis [corrected] after abdominal aortic
aneurysm repair using predictive modeling
techniques [corrected]

2006 37

Evaluation of texture for classification of abdominal
aortic aneurysm after endovascular repair

2012 38
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Table I. Continued.

Topic Title Year Reference

Bayesian neural network approach for determining the
risk of re-intervention after endovascular aortic
aneurysm repair

2014 39

An artificial neural network stratifies the risks of
reintervention and mortality after endovascular
aneurysm repair; a retrospective observational study

2015 40

Prediction of in-hospital mortality after ruptured
abdominal aortic aneurysm repair using an artificial
neural network

2015 41

Patient-specific numerical simulation of stent-graft
deployment: validation on three clinical cases

2015 42

Deployment of stent grafts in curved aneurysmal
arteries: toward a predictive numerical tool

2015 43

Using machine learning methods for predicting
inhospital mortality in patients undergoing open
repair of abdominal aortic aneurysm

2016 44

Patient-specific simulation of endovascular repair
surgery with tortuous aneurysms requiring flexible
stent-grafts

2016 45

Using multiple classifiers for predicting the risk of
endovascular aortic aneurysm repair re-intervention
through hybrid feature selection.

2017 46

Feature selection through validation and un-censoring
of endovascular repair survival data for predicting the
risk of re-intervention

2017 47

Applied machine learning for the prediction of growth
of abdominal aortic aneurysm in humans

2018 48
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Manual segmentation is tedious and time-consuming;
it requires a trained and experienced operator and is
subject to interoperator and intraoperator variations.
Automated segmentation would be of great interest to
reduce analysis time, to alleviate the burden of perform-
ing repetitive tasks, and to improve reproducibility.
Vascular segmentation is challenging as vessels and
AAA exhibit high variability of morphology, size, and cur-
vature. The AAA characteristics can be difficult to assess
because of the existence of concomitant occlusive dis-
ease, calcifications, intraluminal thrombus, pre-existing
grafts, or close localization with the surrounding tissues.
Finally, technical considerations, including acquisition
methods, contrast agent used, resolution, and presence
of noise and artifacts, may interfere with image analysis.
Machine learning approaches in AAA imaging analysis
are currently being developed.23 These methods may
facilitate image acquisition, measurements, and report-
ing; they may improve image interpretation and poten-
tially reduce cost.10 We truly believe that major
advances are to be expected within the next few years,
although further research will be required before their
use in daily clinical practice. Such innovative techniques
need to be compared with the gold standard and the
trusted evaluation provided by human experts to eval-
uate their accuracy and their safety. In addition, the
generalizability of the results is another major concern
that requires external validation on large multicenter
and international cohorts. Meanwhile, these methods
can be applied in research settings to optimize segmen-
tation, to reduce computational time, or to provide
detailed quantitative analysis under the supervision of a
medical expert.

Intraluminal thrombus segmentation. Intraluminal
thrombus is a factor contributing to AAA development,
and its increase correlates with the aneurysm sac and
rupture.50 A precise and quantitative volumetric anal-
ysis of the thrombus would be useful to better assess the
risk of AAA rupture. Thrombus segmentation is a chal-
lenging task as its borders are irregular and not well
defined because of the presence of adjacent structures
with similar intensity values and regions of low boundary
contrast.
Several semiautomatic approaches have been pro-

posed for thrombus segmentation. de Bruijne et al16

developed a method that adapted both the shape and
the appearance model of the original active shape
model formulation. The evaluation of the method on 23
acquired CTA images demonstrated a better accuracy
for thrombus segmentation compared with the conven-
tional active shape model. Other investigators generated



Table II. Definition of technical terms related to artificial intelligence (AI)

General terms

AI: Ability of a machine or a device to display properties of human intelligence.
Machine learning: Subdiscipline of AI whereby a set of techniques is used to give the machine the ability to learn.
Deep learning: Type of machine learning method based on a neural networks architecture with several hidden layers. The large
number of hidden layers (the “depth” of the algorithm) requires a large quantity of training data.

Data mining: Interdisciplinary subfield between computer science and statistics that aims to discover patterns in large data sets.
Pipeline: Term used in software engineering that corresponds to a chain of processing elements that transform input elements into
outputs and where the output of one element is the input of the next one.

Segmentation: Term used in computer vision that corresponds to the process of partitioning a digital image into multiple segments
(sets of pixels).

Technical terms

Active shape model: Model-based method that makes use of a prior model of what is expected and iteratively attempts to find the
best match position between the model and the data.

Back-propagation network: Supervised learning algorithm for training artificial neural networks.
Bayesian networks: Type of probabilistic graphical model used to build models from data or expert opinion. (3D) Deformable model:
Geometric object that can move under the influence of internal forces defined by the model itself and external forces computed
from the data.

Feature selection: A process of selecting a subset of original features according to certain criteria, frequently used as a reduction
technique for data mining.

Finite element analysis: Numerical method for solving problems of engineering and mathematical physics.
Graph-cut method: Method to solve a class of energy minimization problems in graphs, such as image segmentation.
Support vector regression: A supervised-learning approach to approximate a real-value function with error control.
Multiple logistic regression: Estimation of the parameters of a logistic model (based on a logistic function) to approximate data
through classification. This problem can be solved through a support vector machine (see support vector regression).

(Artificial) Neural network: Computing systems inspired by biologic neural networks that process data through layers of
mathematical functions (the neurons). Such systems “learn” to perform tasks by considering examples, generally without being
programmed with task-specific rules.

Multilayer perceptron: Common architecture of artificial neural network. This architecture is very resource and learning data
consuming.

Multiple classifier: A machine learning architecture based on the fusion of several classifier outputs for better accuracy and
classification.

Convolutional neural network: Popular neural network architecture. Convolutional neural networks use a variation of multilayer
perceptron designed to require minimal preprocessing. They are easier to train and generally more effective than multilayer
perceptron.

Deep convolutional neural network: A convolutional neural network with more than one layer (ie, belonging to deep learning
techniques). It takes advantage of the hierarchical pattern in data and assembles more complex patterns using smaller and
simpler patterns. It is most commonly applied for visual image analysis.

Radial basis function networks: An artificial neural network architecture that uses radial basis functions in its neurons. They have
many uses, including function approximation, time series prediction, classification, and system control.
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a semiautomatic segmentation algorithm based on the
application of geometric methods to the boundary
curves obtained by a level set method.22 The comparison
with manual segmentation from an expert on 10 CTA im-
ages showed a mean overlap for the outer wall boundary
of 94.6% and a mean relative error of 15.84% for the mea-
surement of wall thickness. Olabarriaga et al18 developed
a deformable model-based method for 3D thrombus
segmentation from CTA images. A study of 17 patients
with AAA showed the agreement of the method with
manual segmentation, with the advantage of reducing
user interaction. Another 3D deformable model-based
approach requiring minimal user interaction was devel-
oped and demonstrated accurate results compared
with manual delineation, with an average processing
time of 8.2 6 3.5 seconds.25

Finally, other semiautomatic approaches based on
modifications of the graph-cut method were used.20,21

In a set of 44 patients with magnetic resonance and
contrast-enhanced CT images, Duquette et al21 demon-
strated reproducible evaluations of lumen interface and
aortic wall with their method, with results similar to
those obtained with a human operator. Other investiga-
tors developed a method based on double-surface 3D
graph search using a triangular mesh, offering another
alternative to facilitate thrombus segmentation from
CTA images.20 Whereas these results are encouraging
for an accurate and easily available measurement of
the intraluminal thrombus to be obtained, all of the
methods described require minimal user interaction.
Based on a deep convolutional neural network,
Lopez-Linares et al26 developed fully automatic ap-
proaches for thrombus detection. The pipeline was
trained, validated, and tested in 13 postoperative CTA im-
ages of patients with AAA, and segmentation quality was
evaluated by comparing results obtained from the auto-
matic method with the manually delimited volume.
Even if the mean relative volume significantly differed
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between the two approaches, these results are encour-
aging as the automatic method could be improved by
training the network with more data sets.

Segmentation of aortic calcifications. The presence of
aortic calcifications has an impact on AAA development
and risk of rupture as they may cause severe tissue over-
stretching in surrounding tissue areas. A higher aortic
calcification score was significantly associated with the
development of symptomatic and ruptured AAA.51 AI
may offer the opportunity to develop software that en-
ables a rapid and objective quantitative assessment of
calcifications in a large data set of patients.
Several semiquantitative computerized methods have

been developed to segment aortic calcifications,27

some of them derived from the Agatston score.52 An
evaluation in a cohort of 102 patients with AAA who un-
derwent elective repair demonstrated the correlation be-
tween the different methods, offering interesting
perspectives on their use in research settings.27 To go
further in the understanding of the link between vascular
calcifications and cardiovascular diseases, some authors
aimed to develop a fully automated pipeline to compute
aorta morphology and calcification measures in CT im-
ages.53 The detection performance of the algorithm for
calcifications was compared withmanually detected cal-
cifications, and of the 424 calcified regions marked by
the expert, the algorithm successfully detected 96% of
them correctly. The pipeline was then applied to a cohort
of 2500 patients with chronic obstructive pulmonary dis-
ease and identified correlations between calcification
volume and aorta width and mean radius.53 A machine
learning approach using convolutional neural networks
was recently applied to develop a fully automated
vascular calcification algorithm.54 The method was
tested in a data set of 9914 CT scans obtained from
consecutive adults who underwent colonography
screening, and the results were compared with the Agat-
ston score obtained with semiautomated methods. For
the 812 scans compared, the r2 agreement value was
0.84, suggesting the reliability of the method.
CHARACTERIZATION OF AAA GEOMETRY AND
FLUID DYNAMICS
The characterization of AAA geometry and the material

properties of the arterial wall is a critical step to assess
the risk of rupture.3,4 The wall thickness plays a
central role in AAA pathogenesis, and several studies
aimed to develop algorithms based on neuronal net-
works for the accurate quantification from CT images.30,31

In a set of 20 contrast-enhanced AAA image data sets,
Shum et al31 demonstrated a good agreement of their
method with the manual assessment performed by
vascular surgeons, with average coefficients of variation
of 10.59% for ruptured AAA and 13.02% for nonruptured
AAA. Ruptured aneurysms exhibited significantly thicker
walls than nonruptured AAA (1.78 mm vs 1.48 mm; P ¼
.044), underlining the potential of this quantitative
assessment for the risk of AAA rupture.
A precise characterization of AAA geometry was devel-

oped by combining different algorithms for image seg-
mentation and wall thickness detection, leading to the
calculation of 25 size and shape indices.30,32 In this study,
a decision tree algorithm was created using an open
source machine learning software on 76 contrast-
enhanced CT scans, and the population was divided
into ruptured (n ¼ 10) and nonruptured AAA (n ¼ 66).
The decision tree model based on a combination of
indices was trained and demonstrated an average pre-
diction accuracy of 86.6%. These results demonstrate
the feasibility of AI and machine learning to precisely
characterize AAA geometry to define patterns of higher
risk of rupture.
Last, fluid dynamics are considered to play a critical role

in AAA formation and progression.55 Blood flow induces
wall shear stress (WSS), which contributes to the risk of
rupture in AAA. By combining computational fluid dy-
namics with data mining methods, some investigators
estimated WSS on the basis of geometric parameters
and demonstrated the potential interest of this
approach to development of a predictive system.33 An
alternative machine learning-based approach was also
proposed for the calculation of WSS and demonstrated
its interest to predict WSS distribution at different car-
diac cycle time points.34

PREDICTION AND PROGNOSIS OF PATIENTS
WITH AAA
Prediction of AAA growth and rupture. The application

of AI has offered interesting perspectives for image seg-
mentation, automation, and characterization of the
AAA, facilitating and improving data acquisition and
quantitative measurements in large data sets of patients.
A combination of these advances may help to better
evaluate the prognosis of patients and predict the risk
of AAA growth and rupture (Table III). A first study
investigated the feasibility of predicting future AAA
growth using a set of benchmark learning technique.48

The algorithm, based on support vector regression us-
ing two features (flow-mediated dilation and AAA
diameter) accurately predicted the individual’s AAA
diameter within a 2-mm error in 85% of patients at
12 months and 71% at 24 months. Another computer
program integrating eight biomechanical factors was
created to predict the risk of AAA rupture.36 The software
calculated a patient-specific severity parameter and
provided a patient status classified as low risk, observa-
tion, elective repair, or imminent rupture. The method
was tested in three clinical cases and correctly classified
the patient’s status. Machine learning has the ability to
compute large and heterogeneous data sets and to
identify patterns between variables even if their



Table III. Use of artificial intelligence (AI) for prediction and prognosis of patients with abdominal aortic aneurysm (AAA)

Predicted factor Study population Method Main results References

AAA evolution

Growth 94 patients with AAA
followed up at
12 months

79 patients with AAA
followed up at
24 months

Benchmark learning
technique using
nonlinear kernel support
vector regression with 2
features and
hyperparameter
optimization using
nested fivefold cross-
validation

Average AAA growth: 3.4%
at 12 months and 2.8%
per year at 24 months

Algorithm predicted the
individual’s AAA diameter
to within 2-mm error in
85% and 71% of patients
at 12 and 24 month

Lee et al,48

2018

Rupture 3 clinical cases Calculation of a time-
dependent specific
parameter based on 8
biomechanical
parameters

Specific parameter value
classified the patient’s
status correctly in all
cases

Kleinstreuer
and Li,36 2006

Postoperative
outcomes

In-hospital
mortality

125 patients admitted
for emergent ruptured
AAA repair: 108 open
repair, 17 EVAR

4-variable ANN
Comparison with multiple

logistic regression and
Glasgow Aneurysm Scale
score

Results derived from
multiple regression
logistic regression, ANN,
and aneurysm score
models:

d AUROC of 0.85 6 0.04,
0.88 6 0.04, and 0.77 6
0.06
d Pearson r2 values of 0.36,
0.5,2 and 0.17

Wise
et al,41 2015

57 attributes from 310
cases

3 machine learning
algorithms tested:
multilayer perceptron,
radial basis function
networks, and Bayesian
networks

For Bayesian networks:
sensitivity of 73%,
specificity of 92.6%

For radial basis function
networks: sensitivity of
52.1%, specificity of 96.1%

For multilayer perceptron:
sensitivity of 65.2%,
specificity of 96.1%

Monsalve-
Torra et al,44

2016

1751 patients with AAA
who underwent open
repair: 1205 elective,
546 emergency

4-variable ANN
Comparison with multiple

logistic regression
analysis and clinicians’
prediction

ANN prediction tended to
overestimate the risk of
low-risk cases and to
underestimate the risk of
high-risk patients

Clinicians tended to
underestimate the risk of
high-risk cases

Multiple regression model
had the best internal
validity

Hadjianastassiou
et al,37 2006

30-day mortality 102 patients operated on
for ruptured AAA

4-variable ANN ANN correctly predicted
survival in 82.5% of
patients

Sensitivity and specificity
values: 86.4%; 79.3%

Positive and negative
predictive values: 82.6%;
88.5%

Turton et al,35

2000

Endograft
complications

761 patients who
underwent EVAR with
a mean follow-up of
36 6 20 months

ANN created from aorta
morphologic features to
class patients in high or
low risk

ANN predicted endograft
complications and
mortality with
discrimination between
low-risk and high-risk

Karthikesalingam
et al,40 2015
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Table III. Continued.

Predicted factor Study population Method Main results References

Assessment of aortic or
limb complications

groups
Comparison of values
between the low- and
high-risk groups in the
validation data set:

d 5-year freedom from
aortic complications:
95.9% vs 67.9%
d 5-year freedom from
limb complications:
99.3% vs 92%
d 5-year freedom from all
endograft complications:
96.5% vs 85.6%
d 5-year freedom from
mortality: 87.9% vs 79.3%

Reintervention
after EVAR

146 patients who
underwent EVAR from
2 distinct centers

Bayesian network and
back-propagation neural
network to class patients
in high or low risk

Assessment of
reintervention

Center 1 neural network
model for prediction of
center 2 patients

d AUROC of the trained
model in center 1: 0.9498
d AUROC of the trained
model in center 2: 0.666
d P value (log-rank test):
.00037

The model succeeded in
differentiating the low-
and high-risk groups

Attallah and
Ma,39 2014

457 and 286 patients
from 2 distinct centers

Multiple classifier
combining support
vector machine, multiple
layer perceptron neural
network, and K-nearest
neighbor classifiers

Multiple classifier
outperformed individual
classifiers to predict the
risk of reintervention after
EVAR

Attallah
et al,47 2017

457 and 286 patients
from 2 distinct centers

Feature selection method
with ANN

The method outperformed
other methods in
distinguishing the high-
and low-risk groups of
reintervention after EVAR

Attallah
et al,46 2017

Aneurysm
evolution
after EVAR

70 patients who
underwent EVAR

3-layer back-propagation
neural network based on
texture features of the
intraluminal thrombus:
GLCM, GLRLM, GLDM

Assessment of aneurysm
evolution

d Favorable: reduction of
AAA diameter
d Unfavorable: growth of
AAA diameter or pres-
ence of endoleaks

Good ability of GLCM,
GLRLM, and GLDM
features to discriminate
between favorable and
unfavorable evolutions

Classification accuracy of
GLCM, GLRLM, and GLDM:
93.41%; 90.17%; 81.98%

Garcia
et al,38 2012

Stent graft
deployment
after EVAR

3 patients undergoing
EVAR

Simulation of stent graft
final deployed shapes
using finite element
analysis

Comparison of the
simulation results with
the real deployed
geometry of stent graft
after surgery

Matching between
simulated and real
deployed stent graft
geometries

Stent locations along the
vessel centerlines were
within a few millimeters
of real stents’ locations

Perrin
et al,42 2015

ANN, Artificial neural network; AUROC, area under the receiver operating characteristic curve; EVAR, endovascular aneurysm repair; GLCM, gray level
co-occurrence matrix; GLDM, gray level difference method; GLRLM, gray level run length matrix.
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relationships are complex and nonlinear.10 Clinical, bio-
logic, and imaging characteristics of patients with AAA
can be combined, analyzed, and used for prediction and
decision-making. Even if validation on larger cohorts is
required, that kind of approach may lead to the devel-
opment of prognostic scores that may help improve
precision medicine and develop patient-specific
guidelines.

Prediction of postoperative outcomes. AAA is associ-
ated with high mortality rates, and several risk prediction
scores have been established in patients undergoing
AAA repair.56 Although a large number of models have
been developed, their performances are not optimal and
not always adapted for each patient as the prognosis
may differ widely according to the procedure (open or
EVAR) and its context (elective, emergency, ruptured or
nonruptured AAA). Several studies aimed to apply AI for
development of predictive mortality scores in patients
undergoing AAA repair (Table III). Two studies used a
four-variable artificial neural network (ANN) model to
evaluate in-hospital41 and 30-day mortality35 in patients
admitted for ruptured AAA repair and demonstrated the
feasibility of this approach. Another study involving pa-
tients who underwent open repair compared the per-
formance of ANN with multiple logistic regression
analysis and clinicians’ prediction for in-hospital mortal-
ity.37 In this study, the ANN prediction tended to over-
estimate the risk of low-risk cases and to underestimate
the risk of high-risk patients.37 Finally, three other ma-
chine learning algorithms, including multilayer percep-
tron, radial basis function networks, and Bayesian
networks, were tested to predict in-hospital mortality
and exhibited variable results in terms of sensitivity and
specificity.44

EVAR has become a well-established alternative to
open repair.3,4 However, its long-term success and sur-
veillance remain a challenge as patients may develop
postoperative complications such as endoleaks, endo-
tension, stent graft migration, or stent graft iliac limb
thrombosis or stenosis.3 Several studies aimed to apply
AI to predict the risk of postoperative outcomes after
EVAR (Table III). An ANN based on AAA morphologic fea-
tures demonstrated its ability to correctly discriminate
patients at low or high risk of aortic complications
(including rupture, endoleaks, graft migration, and sac
expansion) or limb complications (occlusion or stenosis
requiring a reintervention).40 In another study, a back-
propagation network was used to successfully discrimi-
nate AAA with unfavorable evolution (defined as growth
of intraluminal thrombus).38 Attallah and Ma39 demon-
strated the ability of a back-propagation neuronal
network to correctly discriminate patients at high or
low risk of reintervention after EVAR. They further devel-
oped a hybrid feature selection and used a multiple clas-
sifier to predict the risk of reintervention after EVAR.46,47
In time, these approaches may be useful in clinical prac-
tice for better assessment of aneurysmal evolution and
long-term surveillance after AAA repair.
The preoperative planning of EVAR is a critical step to

prevent and to anticipate postoperative complications.3

Using finite element analysis, some investigators devel-
oped a program to simulate final deployed shapes of
stent grafts on preoperative CTA.42 A comparison with
the actual stent graft shape and localization in patients
who underwent EVAR demonstrated the agreement of
the method, even in patients with curved or tortuous ar-
teries.42,43,45 Such tools may be useful in clinical practice
to optimize the planning and sizing of stent grafts and to
anticipate post-EVAR complications.

CURRENT LIMITS AND FUTURE DIRECTIONS
The current literature brings interesting perspectives to

the use of AI for clinical practice. AI-derived software may
improve image segmentation and analysis. This will
allow investigators to more easily detect the aneurysm;
to characterize its anatomic characteristics (including
the presence of calcifications and intraluminal
thrombus); and to automatically calculate the diameters,
lengths, distances, and volumes of the aneurysm and
vessels. In the future, this kind of approach could help
the surgeon in preoperative planning and sizing of
endografts. In addition, data derived from automatic
analysis of AAA images could be combined with clinical
and biologic characteristics of patients to develop
multiple-variable scores, allowing identification of pre-
dictive patterns and better assessment of the prognosis
of patients. This kind of approach will help the vascular
surgeon to better assess the balance between the oper-
ative risk and the risk of aneurysm growth and rupture.
This will create a more personalized therapeutic
approach.
However, several pitfalls and limitations have to be

overcome before these techniques and approaches can
be used in daily clinical practice. External validation is
required, and the generalizability of results may need
multicenter registries taking into account a broad spec-
trum of patient demographics.
The first concern relates to the availability of data and

privacy protection. Indeed, machine learning approaches
require large databases for learning and training. Data
sharing is subject to ethical and legal considerations,
making it extremely difficult to develop publicly avail-
able, large multicentric registries. Second, such tech-
niques require adapted platforms and infrastructures
with sufficient computational power. In addition, a
huge effort of standardization regarding data quality,
storage, sharing, and analysis is necessary. Indeed, the
type of medical data available is diverse and heteroge-
neous, including manual clinical notes, electronic medi-
cal records, laboratory test results, and medical
imaging. Thus, data are generated by various
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manufacturers and are stored in diverse manual or elec-
tronic repositories with a wide variation of quality, for-
mats, resolutions, dimensions, and scales.
Other interrogations relate to theeconomicaspect. Such

approaches are expensive to develop but may improve
the quality of patients’ care, representing a real interest
in termsofpublichealth andpotentially a returnon invest-
ment. The incorporationofAImaymodify clinical practice,
and one may wonder how such changes would be
perceived by both the patients and the clinicians. Some
clinicians may fear that their profession will be replaced
byamachine. Somepatientsmay fear that automation af-
fects the physician-patient relationship and the quality of
the care provided. AI has the potential to be a useful tool
for the clinician but will never replace the physician’s
expertise and decision-making, taking into account not
only the patient’s health status but also the patient’s envi-
ronment and the clinician’s own judgment.
Future directions should be oriented toward improving

collaboration and teamwork between clinicians,
biomedical informatics scientists, and experts. Economic
and institutional support would be a step forward in
developing such projects, which could in time lead to
major advances in both clinical research and practice.

CONCLUSIONS
Although the field is still in its infancy, AI appears to

offer various potential applications in medical practice
for patients with AAA. It may help in the interpretation
and analysis of AAA imaging by enabling automatic
quantitative measurements and a precise characteriza-
tion of AAA morphology, geometry, and fluid dynamics
as well as of the presence of intraluminal thrombus
and calcifications. Although further studies are required,
it could lead to the development of new software to help
surgeons in preoperative planning and sizing of endog-
rafts. With use of AI, the combination of clinical, biologic,
and imaging characteristics of patients would allow
development of robust and accurate predictive and
prognostic scores of AAA evolution and risk of rupture.
That kind of approach could help surgeons to better
evaluate the indications for surgical repair. Finally, it
would also help to better predict the postoperative out-
comes and to adapt the surveillance of patients under-
going AAA repair. Such approaches may improve
precision medicine and allow a personalized therapeutic
approach to be proposed.
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Supplementary Table (online only). Combination of
keywords used for the search strategy in PubMed/MED-
LINE database

Combination of keywords

Artificial intelligence OR Aneurysm OR

Machine learning OR Aortic aneurysm OR

Deep learning OR AND Abdominal
aortic aneurysm OR

Neural network OR Open repair OR

Convolutional neural
network OR

Endovascular repair

Segmentation
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