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ABSTRACT
Objective: The purpose of this study was to employ biomechanics-based biomarkers to locally characterize abdominal
aortic aneurysm (AAA) tissue and investigate their relation to local aortic growth by means of an artificial intelligence
model.

Methods: The study focused on a population of 36 patients with AAAs undergoing serial monitoring with
electrocardiogram-gated multiphase computed tomography angiography acquisitions. The geometries of the aortic
lumen and wall were reconstructed from the baseline scans and used for the baseline assessment of regional aortic
weakness with three functional biomarkers, time-averaged wall-shear stress, in vivo principal strain, and intra-luminal
thrombus thickness. The biomarkers were encoded as regional averages on axial and circumferential sections perpen-
dicularly to the aortic centerline. Local diametric growth was obtained as difference in diameter between baseline and
follow-up at the level of each axial section. An artificial intelligence model was developed to predict accelerated
aneurysmal growth with the Extra Trees algorithm used as a binary classifier where the positive class represented regions
that grew more than 2.5 mm/year. Additional clinical biomarkers, such as maximum aortic diameter at baseline, were
also investigated as predictors of growth.

Results: The area under the curve for the constructed receiver operating characteristic curve for the Extra Trees classifier
showed a very good performance in predicting relevant aortic growth (area under the curve ¼ 0.92), with the three
biomechanics-based functional biomarkers being objectively selected as the main predictors of growth.

Conclusions: The use of features based on the functional and local characterization of the aortic tissue resulted in a
superior performance in terms of growth prediction when compared with models based on geometrical assessments.
With rapid growth linked to increasing risk for patients with AAAs, the ability to access functional information related to
tissue weakening and disease progression at baseline has the potential to support early clinical decisions and improve
disease management. (JVSeVascular Science 2023;4:100119.)

Clinical Relevance: Disease progression and tissue weakening in AAAs are complex and multifactorial processes linked
to rapid growth and increased risk of adverse clinical outcomes. Serial monitoring is key in the management of AAAs and
can be improved by accessing functional information at baseline to predict rapid growth in individual patients.
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Current clinical practice relies on the monitoring of an
abdominal aortic aneurysm (AAA) size and growth,
with surgical intervention recommended when compli-
cations arise or a threshold size is reached. This approach
has proven limitations, with rupture occurring in small
aneurysms and larger aneurysms undergoing repair at
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an advanced stage of disease likely to result in poorer
clinical outcomes.1,2 From a structural point of view, dis-
ease progression and aortic wall weakening are associ-
ated with rapid growth and increased risk of rupture.3,4

Therefore, accurate estimate of aortic weakening could
help identifying risk for rapid growth in individual aortas
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ARTICLE HIGHLIGHTS
d Type of Research: Single-center retrospective cohort
study

d Key Findings: The characterization of aortic tissue by
means of biomechanics-based biomarkers showed
very good performance (area under the curve ¼ 0.92)
in the artificial intelligence-based prediction of faster
than average growth for 36 patients with abdominal
aortic aneurysms under serial monitoring. The
biomechanics-based biomarkers of aortic weakening
were found to be critical features contributing to local
growth.

d Take Home Message: The ability to access functional
information related to aortic weakening and disease
progression at baseline and evaluate the tendency to
grow for individual aortas has the potential to benefit
patient monitoring and enable precision-based
aortic care.
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providing an essential tool to improve risk stratification
and disease management.
Given the multifactorial nature of AAA progression, a

multifactorial assessment linked to the local AAA patho-
physiology is essential to improve the current standard of
care. In this regard, biomechanics-based approaches
have shown potential in the functional characterization
of individual aortas and the estimate of aortic wall weak-
ening.5-8 Specifically, the role of disturbed hemody-
namics (ie, low wall-shear stress) and thick intraluminal
thrombus (ILT) has been investigated, showing associa-
tion with disease progression and aortic expansion.9-11

Similarly, from a structural perspective, the assessment
of local wall deformability can provide an insight into
the regional weakening of the aortic wall, with elevated
strain potentially suggesting a weaker tissue.12

The present study proposes the use of an artificial intel-
ligence (AI) model to investigate a compound measure,
the Regional Aortic Weakness (RAW) (patent
WO2021059243A1),7 as a surrogate of aortic weakening
and its relation to local aortic growth for a population
of patients with AAAs under serial monitoring.
METHODS
Study population and region of interest. The research

protocol for this single center retrospective study was
approved by the University of Calgary Conjoint Health
Research Ethics Board (CHREB - Ethics ID #REB21-
0043). The subject of the study was a population of pa-
tients with AAAs (age 18þ year old, no known genetic ab-
normalities) who were monitored with at least two
electrocardiogram (ECG)-gated multiphase computed
tomography angiography (CTA) acquisitions (image reso-
lution, 0.7 � 0.7 � 2.0 mm) during a minimum surveil-
lance time of 8 months between 2016 and 2021. A total
of 36 patients met the inclusion criteria of the study
protocol.
The region of interest for the analysis was defined as the

abdominal aorta, specifically from below the celiac artery
to the common iliac bifurcation, which were used as
landmarks to ensure evaluation of the same portion of
the artery at baseline and follow-up. The aortic wall and
lumen for each patient were segmented semi-automat-
ically13 from both the baseline and follow-up CTAs, and
the 3D geometry of both structures was extracted as a
triangulated surface mesh by using the imaging software
Simpleware ScanIP (Synopsys).

Baseline analysis of aortic weakness: a compound
measure. The aortic wall and lumen geometries ob-
tained from the baseline scan were used for the baseline
assessment of aortic weakness with three biomarkers,
the time-averaged wall-shear stress (TAWSS), the in vivo
principal strain, and the ILT thickness.
Specifically, the geometry of the aortic lumen was

discretized into tetrahedral elements and used as
computational domain for computational fluid dynamic
(CFD) simulations of blood flow performed in Fluent
(Ansys) by using the SIMPLE algorithm as described in
detail in a previous publication.7 The blood was modeled
as an incompressible Newtonian fluid with constant den-
sity, whereas the aortic wall (blood interface) was
assumed to be rigid (no slip condition). From the simula-
tion of a full cardiac cycle, the TAWSS was obtained as a
quantifier of disturbed flow patterns (low TAWSS).7

The reconstructed geometry of the aortic wall was used
to estimate in vivo aortic strain from ECG-gated multi-
phase CTA images with in-house ViTAA software. The
triangular surface mesh of the aortic wall served as 3D
feature-tracking model to measure nodal displacements
on successive images throughout the cardiac cycle by
means of an optical-flow algorithm.7,14 The in vivo strain
was obtained directly from the nodal displacements of
the mesh model and did not require any modeling as-
sumptions (ie, constitutive model for the aortic wall or
ILT).
Finally, the aortic wall surface mesh was used in combi-

nation with the lumen surface mesh to measure the ILT
thickness, defined as the local distance between the two
geometries.
The workflow of the study methods is shown in Fig 1.

AI-based growth prediction. An AI model was devel-
oped to predict accelerated aneurysmal growth, defined
as higher than 2.5 mm/year based on average aortic
growth,15 using the patients’ baseline and first follow-up
scans. Data preparation involved registering each pa-
tient’s abdominal aorta acquired at baseline to the
follow-up acquisition. The surface mesh defining each
aorta was then subdivided in 96 patches (12 axial sections
and 8 circumferential sections perpendicularly to the
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Fig 1. Workflow of the study methodology. AI, Artificial intelligence; CFD, computational fluid dynamics; CTA,
computed tomography angiography; ILT, intraluminal thrombus; TAWSS, time-averaged wall-shear stress.
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aortic centerline), where the three obtained biomarkers,
or RAW components, (TAWSS, strain, and ILT) were
encoded as a regional (patch) average to achieve a local
characterization (Fig 2). The local diametric growth was
calculated as difference in diameter at the level of each
axial section (Fig 3) following registration.
Over the 36 patients (3456 patches), 3147 patches were

used for AI modeling, whereas 309 patches, randomly
distributed among the patients, were excluded due to
quality check failures in the diametric growth calculator,
usually occurring near the aortic bifurcation into the iliac
arteries. The Extra Trees algorithm was used as a binary
classifier, where the positive class represented patches
that grew more than 2.5 mm/year.16 Prior to training
the algorithm, Boruta feature selection was used to
select relevant features.17 A stratified 70%/30% train/test
dataset split at the patient level (25 patients used for
training and 11 patients for testing) was implemented
to evaluate the performance of the algorithm.18 The
training and inference were done at the patch level
within each patient, with the train/test split based on
random sampling of the patients. A 10-fold cross-
validation was performed on the training set, whereas
the 30% leave out set was used as a pure validation set.
As such, a patient’s patch samples were not permitted
from being in both training and testing sets to avoid la-
bel leakage.19 The training dataset was used to train the
Extra Trees model, and the test dataset was used to
evaluate its performance in terms of receiver operating
characteristic (ROC) area under the curve (AUC).20 All an-
alyses were conducted using Python programming lan-
guage and the scikit-learn library.21

Additional biomarkers derived from clinical and demo-
graphic information, such as maximum aortic diameter
at baseline, age, biological sex, weight, height, family his-
tory of AAA, smoking history, heart disease, hypertension,
chronic obstructive pulmonary disease, and diabetes
mellitus were also investigated as predictors of growth.

RESULTS
The AAA study population (n ¼ 36; mean age, 77 6

7 years; 89% males) presented a mean maximum aortic
diameter at baseline of 47.2 6 5.7 mm and a median sur-
veillance time between CT scans of 12 months (range, 8-
31 months). Patients’ demographic and clinical informa-
tion are summarized in Table.
Of the total 3147 patches, evaluated according to local

diametric growth, 728 patches (23%) showed acceler-
ated growth above the relevant threshold at the follow-
up assessment. The maximum growth rate for individual
aortas occurred at the location of maximum baseline
diameter in only two patients (6%).
Patients with a larger baseline maximum diameter

($50 mm) did not demonstrate significant difference in
terms of local diametric growth, regional ILT thickness,
or regional strain when compared with the patients



Fig 2. Distribution of the time-averaged wall-shear stress (TAWSS) on the lumen surface (A) and distribution of
the strain (B) and intraluminal thrombus (ILT) (C) on the wall surface for a case example. Each panel shows the
nodal distribution of the variable on the left and the patch-based encoding for local characterization on the right.
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with a smaller baseline maximum diameter (<50 mm). A
significant difference between the two subsets was
found for the TAWSS, with patients with larger baseline
maximum diameter showing significantly lower regional
TAWSS (mean regional TAWSS, 0.59 6 0.37 Pa vs
0.78 6 0.48 Pa; P < .001).
Among the patients in the smaller baseline maximum

diameter subset, patients with faster diametric growth
(> median of the maximum per patient annual growth
rates) showed significantly higher regional ILT thickness
(mean regional ILT, 4.87 6 3.37 mm vs 3.71 6 2.77 mm;
P < .001) and significantly lower regional TAWSS (mean
regional TAWSS, 0.49 6 0.38 Pa vs 0.83 6 0.48 Pa; P <

.001). Among the patients in the larger baseline
maximum diameter subset, on the other hand, patients
with faster diametric growth (>median of the maximum
per patient annual growth rates) showed significantly
higher regional ILT thickness (mean regional ILT, 5.31 6
3.57 mm vs 4.96 6 3.62 mm; P < .001), whereas no signif-
icant differences were found for the regional strain and
TAWSS.
The AUC for the constructed ROC curve for the Extra

Trees classifier was statistically greater than 0.5 (AUC ¼
0.92, with micro and macro AUC equal to 0.94 and
0.92, respectively) (Fig 4), showing a good performance
of the model in predicting relevant aortic growth.
Shapley Additive exPlanations (SHAP) dependence

plots are presented to shows the contribution and
importance of the explored biomarkers to the growth
prediction (Fig 5 and 6).22 The three biomechanics-
based biomarkers, or component of the RAW index (ie,
TAWSS, strain, and ILT)7 were found to be critical features
contributing to local growth, with the TAWSS playing the
most important role in the model prediction. The
additional clinical biomarkers were found to have a
lesser effect on the growth prediction.



Fig 3. Example of regional growth assessed as a measure
of local diameter change, determined by registering the
reconstructed geometries at baseline and follow-up scan
and comparing the diameters at multiple sections
perpendicular to the aortic centerline. The aortic center-
line is shown as a black line along the length of the aorta.

Table. Clinical and demographic information for the
study population

Variable Patients (n ¼ 36)

Male 32 (89)

AAA family history 2 (6)

Smoking 27 (75)

Heart disease 16 (44)

HTN 8 (22)

COPD 19 (53)

DM 9 (25)

Max diameter $50 mm 11 (30)

COPD, Chronic obstructive pulmonary disease; DM, diabetes mellitus;
HTN, hypertension.
Data are presented as number (%).
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DISCUSSION
The present work focused on AI-based faster than

average growth prediction for a retrospective population
of patients with AAAs under serial monitoring. Faster
than average aortic growth has been demonstrated in
multiple previous studies to contribute to negative clin-
ical events including aortic rupture and can be used as
a surrogate marker for aortic risk.3,4 A combined in vivo
fluid dynamics and strain analysis approach was used
to derive a compound measure of RAW from ECG-
gated multiphase CTA baseline scans and characterize
individual aortas on a regional level. The present
approach for faster than average growth prediction inte-
grates multiple functional biomarkers with the ability to
capture the multifactorial and local nature of AAA path-
ophysiology. Each biomarker involved in the compound
measure, along with clinical biomarkers, was used as
feature to train and test an AI model for the prediction
of local diametric growth based on the Extra Trees
Classifier algorithm. Other tree-based approaches, such
as Random Forest, were also assessed and resulted in
good performance; the Extra Trees Classifier was the
top performing classifier. Neural network-based ap-
proaches performed poorly, which is not uncommon
for tabular datasets; similarly logistic regression showed
poorer performance (AUC ¼ 0.77).
The performance of the Extra Trees Classifier, assessed
with a ROC curve and SHAP dependence plots, showed
that the in vivo functional and local characterization of
the aortic tissue provides predictive information in terms
of local aortic growth, with the three critical biomarkers
being objectively selected as the main predictors of
faster than average growth.
The TAWSS was selected as the most important feature

in the model prediction, followed by the ILT and the
strain. Shear stresses are known to have an essential
role in regulating the physiology and pathophysiology
of the endothelium with effects on vascular function.
Literature on AAAs has consistently implicated low
TAWSS as a driver of aortic expansion and rupture, as
well as ILT deposition.7,9,23 In the context of mechano-
sensing and mechano-transduction, the wall-shear stress
represents the signal to which the endothelial cells and
the aortic tissue respond and adapt in the long term.
Therefore, this biomarker carries a high predictive power
in terms of aortic weakening and faster than average
growth prediction, as confirmed by its major contribu-
tion to the present model. Similarly, the presence and
amount of ILT has been associated with increased local
inflammation and hypoxia affecting the structural integ-
rity of the tissue, which in turn promotes weakening and
disease progression.11,24,25 A relationship between ILT and
aortic aneurysm rupture location has also been demon-
strated.26 Although the TAWSS and ILT seem to intui-
tively have more predictive power due to their effect on
the remodeling of the aortic tissue, the in vivo strain
can inform directly on the actual state of structural
degradation as it reflects the local deformation of the
wall. An elevated strain can be indicative of structural
weakening when it is not caused by a direct action of
the blood impinging on the aortic wall, which would
also result in elevated local TAWSS. For this reason, the
combined approach provides a functional and local
characterization of the aortic tissue, with all three biome-
chanics biomarkers contributing to growth prediction.



Fig 4. Receiver operating characteristic (ROC) curves for the Extra Trees Classifier with reported area under the
curve (AUC). The Extra Trees algorithm was used as a binary classifier where the positive class represented patches
with diameter growth $2.5 mm/year. A Boruta feature selection was used to select relevant features.

Fig 5. Shapley Additive exPlanations (SHAP) dependence plots showing the effect of each of the biomechanics-
based biomarkers on the growth prediction. Time-averaged wall-shear stress (TAWSS) (A), strain (B), and intra-
luminal thrombus (ILT) (C), and the maximum aortic diameter at baseline (D).

6 Forneris et al JVSeVascular Science
2023



Fig 6. Shapley Additive exPlanations (SHAP) summary plot showing the importance of all the features contrib-
uting to the model prediction. AAA, Abdominal aortic aneurysm; COPD, chronic obstructive pulmonary disease;
ILT, intraluminal thrombus; TAWSS, time-avereaged wall-shear stress.
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The use of features based on the functional and local
characterization of the aortic tissue resulted in a superior
performance in terms of faster than average growth pre-
diction when compared with models mostly based on
geometrical assessments.27-29 The morphology and
morphological changes in the aorta play a role in disease
progression, but they fail to fully characterize the aortic
tissue from a functional perspective and to account for
the local processes and high level of heterogeneity in
the aortic tissue. This aspect is further highlighted by
the finding that maximum growth rates occurred at
the location of maximum baseline diameter in only
two cases, showing the importance of assessing individ-
ual aortas at the local level to fully characterize the aortic
tissue and its localized weakening. Aortic geometry and
biomechanics are strictly connected; for example, a
larger maximum aortic diameter may contribute to a
higher level of stress in the aorta and a more disturbed
blood flow. However, only a local biomechanical assess-
ment can inform on the actual state of weakening and,
therefore, propensity for faster than average growth, of
each individual aorta. Additionally, the current biome-
chanical approach presents the advantage of the
in vivo strain estimate being free from assumptions on
the mechanical behavior of the aortic tissue and ILT
that was required for prior models using finite element
analysis. This limitation has affected biomechanics-
based indices of aortic growth and/or rupture in the
past, hindering their performance, which was often re-
ported as providing little to no added value to geometric
assessment.28-30

The objective of the study was to explore the ability of
the present method to predict growth and AAA
evolution within 1 year given the common clinical prac-
tice of follow-up scans at 6 months to 1 year. Future
work will focus on expanding the investigation and
growth prediction over a longer surveillance period.
Additionally, future research efforts will aim at achieving
a generalized applicability of the presented methodol-
ogy to different imaging modalities and imaging proto-
cols currently adopted for the clinical monitoring of
AAAs.
The described methodology relies on a patching sys-

tem with multiple patches defined for each axial section
and diametric growth measurement. This aspect would
raise an issue of nonindependent measures when look-
ing at associations between local variables and local
growth. The present work, however, focused on devel-
oping a predictive model and making predictions in
new patients. Although these correlations among obser-
vations may make predictions optimistic in the training
sample, the reported AUC refers to the performance of
the model in predicting faster than average growth in a
randomly sampled group of test patients that were not
included in the training sample.
The interpretation of this work should take into consid-

eration the limitations. The study population was small,
especially in the context of training and testing of AI
models and was based on a single-center cohort. The
local diameter growth assessment was not significantly
affected by interobserver variability in image segmenta-
tion but was limited by the image resolution likely to
affect the estimate of growth rates. The use of rigid
wall assumption for CFD simulations was chosen to
resolve the main flow features in the context of highly
heterogeneous material properties for the aortic wall
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and ILT.31 Nonetheless the use of a rigid wall assumption
is a limitation to the current methods. Finally, although
the retrospective nature of the study presents a potential
for bias in patients’ selection, the definition of the study
cohort and the assessment of each baseline scan was
performed without any prior knowledge of aortic growth
or clinical outcomes. Due to the retrospective nature of
the study, there was limited access to clinical and demo-
graphic data: information on smoking history was
limited and did not allow for a subcategorization of the
study population (ie, active vs former smokers), pharma-
cological data (eg, use of antiplatelets or statins), and
data regarding race/ethnicity of the patients were not
collected.

CONCLUSIONS
The present characterization of aortic tissue by means

of biomechanics-based biomarkers showed very good
performance in the AI-based prediction of faster than
average growth for a population of patients with AAAs
under serial monitoring. The current approach provides
functional insight into the multifactorial essence of AAA
pathophysiology and accounts for its local and heterog-
enous nature. The functional biomarkers were objectively
selected as the main contributors to relevant aortic
growth.
With continuous and rapid growth linked to increasing

risk for patients with AAAs, access to information on dis-
ease progression becomes essential for improved disease
management. The ability to access functional informa-
tion related to tissue weakening and disease progression
at baseline for individual aortas has the potential to
benefit patient monitoring, risk stratification, and treat-
ment selection, and to optimize precision-based aortic
care.
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